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This paper develops recursive kernel estimators for ‘the probability density and the
regression function of nonlinear and nonstationary time series. The resulting method is
charactetized by two smoothing coefficients (the bandwidth and the discounting rate of
observations) that may be selected with a prediction error criterion. Statistical properties
are investigated under a null hypothesis of stationarity and asymptotic elimination of the
discounting. Simulation experiments on complex processes show the ability of the method
in estimating time-varying nonlinear regression functions,
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1. INTRODUCTION

Non-parametric analysis of time series has received increasing attention
over the last ten years. Even though it is a relatively small area in the
context of nonparametric statistics and time-series analysis, important
authors have provided contributions. Original works concern forecast-
ing (Yakowitz, 1985), convergence analysis for dependent sequences
(Robinson, 1983) and identification of nonlinear dynamic models
(Tjostheim and Auestad, 1994). Rather than a method for modeling and -
forecasting, nonparametric regression seems to be an important tool for
diagnostic and testing non-linearity.
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266 C. GRILLENZONI

As pointed out by Priestley (1988) and Tjostheim (1986a), non-
linearity in time series may be closely related to non-stationarity,
namely to the time-variability of parameters. This is the typical
situation of state-space systems for example. On the other hand, it
should be recognized that the most general and realistic situation is
represented by processes that are both non-linear and non-stationary.
Therefore, the important point is to develop non-parametric methods
for estimating regression functions that change over time.

This paper attempts to provide a contribution on this issue. The
basic references are the recursive estimators for linear models (e.g.,
Grillenzoni, 1994) and kernel estimators of the Nadaraya-Watson type.
By combining these techniques, a time-varying non-parametric regres-
sion method for time series is derived. This is characterized by two
smoothing coefficients: the well known bandwidth and the discounting
rate of observations, which may be selected with a prediction error
criterion.

The resulting method is also related to the recursive kernel estimator
introduced by Ahmad and Lin (1976). With respect to classical nonpara-
metric smoothers, this approach treats data sequentially ad associate
specific bandwidths to each observation. Following the approach of
Masry (1987); Roussas and Tran (1992) have derived the asymptotic
distribution of the Ahmad-Lin estimator in the case of stationary
dependent processes, and conclude that “its full potential has not been
appreciated as yet”. Finally, a class of recursive kernel estimates based
on the Robbins-Monro stochastic approximation scheme, has been
developed in engineering by Revesz (1977) and Rutkowsky (1985).

The plan of the work is as follows: Section 2 provides background
material for adaptive estimation. Section 3 derives time-varying kernel
estimators and investigates their properties under the assumption of
stationarity. In Section 4 simulation experiments show the validity of
the proposed method in estimating time-varying regression functions.

2. BACKGROUND

The general situation we consider consists of processes of the type

Z,=g(Zi1,Z12,...,21p) + a4, a,~1ID(0,0?) (2.1)
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with descrete time ¢ > 0 and initial conditions Zy = ap,...,Z _, 41 =

@.p+1. The p-variate function g:() is generally non-hnear and its
structure changes over time. This may occur either with respect to its
unknown parameters or its shape. In the first case we speak of evolu-
tion, whereas in the latter case of heterogeneity. The representation (2.1)
can be explained and motivated by the following working assumptions:

(Al) The input process {a,} is a sequence of independent and
identically distributed (IID) variates having finite vanance We
exclude heteroscedastlmty because the final goal ofa time-varying
modelmg is to obtain stationary innovations.

(A2) The functions g,(-) are bounded and differentiable (up to second
order) uniformly on R” and everywhere in 7 > 0. Their bounded-
ness is such that allows the system to be stochastlcally stable, in
the sense that lim, _, ,.sup, > oP(|Z,| >z) =

(A3) The output process {Z;} has finite moment_s (up to fourth order)
and is asymptotically independent. It is not ergodic, but may be
a, B, ¢, p-mixing, see Bosq (1996 p. 15) for the definition of these
concepts.

These properties are difficult to check and are only allowed by intrinsic
propcrties of the system functions. In particular, assuming p = 1 and
using the nonlinear system theory (e.g., Tong, 1990), stochastic stablhty
follows if g, (-) are contraction mappings:

sep sgp (I—g—éliu) <1 | | (2.2)

in this case the process (2.1) is bounded in probability (and has second
order moments) and is strongly mixing. The proof follows by the fact
that in the stationary case, i.e., g,(-) = g(-), condition (2.2) is sufficient
for the geometric ergodicity (see Auestad and Tjostheim, 1990 p. 673),
a property which implies a-mixing.

In time series literature there are several examples where nonlinear
processes may be viewed as time-varying parameter models. The most
general class is the doubly stochastic one described by Tjostheim
(1986a), which encompasses state-space, bilinear, threshold and other
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models. It is obtained from linear processes by modeling the parameters
as functions of past events. In the autoregressive case we have

Zi=01(J1)Zi-1+ -+ (I -1)Zip+ s (2:3)

where J;_ 1 is the space of events (o-field) generated by Z,_;, 7 > 0.In
the case of state-space systems, the parameters ¢, (-) are linear functions
of an exogenous process; if this process coincides with {a,} we have
bilinear schemes. In any event, conditionally on the space J,_ ;, models
as (2.3) are linear and have time-varying parameters {¢;,_1}.

In this context a simple non-parametric estimator for the vector
¢, = [@1:-1,...,8ps-1]' can be obtained from the technique of local
regression (see Grillenzoni, 1994). This means discounting observa- -
tions with, for example, exponential weights

! [

-1
8N = ( > f\'*"_iz_c;) Do NTXZ (24)

i=p+1 f=p+1

where X; =[Z;_y,...,Z,_,] isthe vector of regressorsand0 < X < lis
the discounting rate. In this setting, (2.3) may be viewed as a semi-
parametric model and (2.4) as its corresponding “one-sided smoother”.

Classical non-parametric estimation usually focuses on more
complex objects such as the regression function g,(zy,...,2p) = E(Z,
|Z—1=2z1,...,Z,_p =12,), where z;, j=1,...,p are auxiliary vari-
ables defined on the support of Z,. If the process (2.1) has order p = 1
and data are available in real time, then a sequential estimator of
kernel type for g,(z) is

where K{() is the kernel, 2 >0 is the bandwidth and fi(z) is a
sequential estimator of the density of the process. It should be noted
that in classical kernel estimation the coefficient % = h, only depends
on the last observation, whereas in the recursive one, it depends on
each observation: 4 = h;, i = 1,...,¢ (see Roussas and Tran, 1992).
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The properties of kernel estimators-have been investigated by
several authors under conditions of stationarity and mixing (e.g.,
Robinson, 1983 and Bosq, 1996). However, mixing assumptions are
usually difficult to check and are more restrictive than those of ergq-
dicity (e.g., Morvai, Yakowitz and Gyorfi, 1996). For this reason, we
consider the following theorem as a basic reference for the paper.

THEOREM 1 Let Z, = g(Z,_1)+ a,, a,~1ID(0, o? < o) be a strictly
stationary, geometrically ergodic process, with moments E(|Z, |2+"7
|Z,_1 = z) < oo for some n > 0. If the conditions:

(B1) the functions f(a), g(z) are twice contmuously dzﬁ"erentlable,

(B2) the variance 0(z) = E{[Z,— g(Z,_, = 2)]*} is bounded and cont-
inuous,

(B3) the kernel K(z) satisfies || K ]|2 = J1K(2) |2+’7dz < oo and limy| , o0
[z K(2)] = ‘ _

then the estimator (2.5) is such that for any z€ R

Viila (k) - () S [ f((? ||Ku2]

as t—oo, h—0, th—

(2.6)

Proof See Yakowitz (1985, 1989), Auestad and Tjostheim (1990) and
Morvai et al. (1996).

In the literature, result (2.6) is usually proved under the condition
th® T — 0; however, this mainly serves to minimize the MSE of (2.5).
In fact, having var(g,) = O(1/v/th) from (2.6) and bias(g,) = O(#?)
from Auestad and Tjostheim (1990), by letting 42 oc 1/+/7h it follows
that the design o« r~!/? balances square bias and asymptotic variance.

The technique of local regression belongs to the class of non-para-
metric estimators (see Hastie and Loader, 1993), but it is relatively
heuristic. We establish the relationship between methods (2.4) and (2.5)
by deriving the kernel estimator for a model (2.3) with parameters
that vary as deterministic functions of the time. In practice, we
focus on the semi-parametric scheme Z, = 3_, ¢;(t)Z,; +a, that is
stable if ¢; (¢) move inside the parameter space of a stationary AR(p)



270 C. GRILLENZONI

process. Given data, the non-parametric part of the model is provided
by the functions ¢;(-) and kernels must be defined for them.

In a first order stationary model, the correspondence arises from.the
fact that estimator (2.4) minimizes the criterion Q; = Y| , A'a?,
whereas (2.5) minimizes

Qi(z) = ; wi(2)[Zi - 8@ with wi(2) = K([t( Z—*l)zi:;’iz;)h]

In our case the regression function is g(, z) = ¢(f)z and conditionally
on z = Z,_, the weights are w;(¢) = K|[(t — i)/h]/(th), because f(f) = 1.
Thus, the resulting kernel estimator becomes (2.4) with weights \*~*
just replaced by K[(¢—i)/h]. In the following we will focus on the
exponential window because it is'easier to manage recursively and allows
to obtain a suitable expression of the dispersion of the estimator.

3. TIME-VARYING KERNEL ESTIMATION

The sequential implementation is necessary for estimating time-varying
parameters, but it is not sufficient because the estimators tend to
converge. In order to render the method (2.5) suitable for nonstationary
processes, one has to weight observations as in (24) so0 as to retain the
tracking ability. The adaptive kernel estimator then becomes

wonn= (5 (5]

i=1 ‘=1

() B

(3.1)

Having (3, A% — 1/(1—)) as t— oo, some terms could be
deleted; however, (3.1) is suitable for small samples and its
denominator provides the density f,(z; 4, A).

Estimator (3.1) is sequential, but every time it processes all available
observations. To avoid this drawback one must derive its recursive
(on-line) version.
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PROPOSITION 1  As t— oo the estimator (3.1).is equivalent to the
recursive algorithm

Fi0) = Ma(e) + (- 2K (222 (3:20)
a(z) = [Z; — 8,1 (2)] (3.2b)

80 =21+ (- @k (L al) 620)

Proof See Appendix A.l.

In (3.2b) we have introduced the prediction error function d,(z) which
will have important uses in the following. Focusing on the regression
function, the term (1 — X\)/Ais insignificant and could be omitted in (3.2).
In this case, however, (3.2a) would no longer provide the recursive
estimate of the density. As a comparison with other approaches, one
may note that Ahmad and Lin (1976) derived the estimator (3.2c)in the
form §,(z) = #,(z)/f,(2), where the numerator was recursively estimated
as in (3.2a). Moreover, in the stochastic approximation method of
Revesz (1977) the density is not computed, just because the term
1-XN7 ; (z) is replaced by a stepsize coefficient a > 0.

Algorithm (3.2) is computationally more efficient than (3 1) and is
more transparent in showing its capability of tracking time-varying
functions; on the other hand, it requires the initial conditions fy(z),
2o(z). Under the assumption of stability, the problem of specifying
these quantities may be easily solved by setting Zo = ao, which implies
fo(2) = f(a) and go(z) = 0. For f(a) one may assume a non-informative
distribution, such as the uniform density with support given by the
range of values assigned to z.

Finally, as in standard kernel estimation (e.g., Hardle, 1990),
extension of (3.2) to p-th order processes can be obtained by replacing
z with the vector z = [z,...,2,] and using multivariate kernels.
However, it is well known that such functions may be simply obtained
as the product of univariate kernels. This leads us to replace the term
h'K[(z— Z,_1)/K] with hPTE_,K [(z; — Z,;)/H] in Eqgs. (3.22,¢).

Despite the fact that estlmator (3.2)is designed for non-stationary
processes as (2.1), we now investigate its statistical properties under
stationarity. Indeed, this is the only one condition under which a
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rigorous inference can be developed. A working condition will be the
asymptotic removal of the discounting (A— 1); however, as for the
bandwidth in Theorem 1 (4 — 0), this must occur at a suitable rate.

PROPOSITION 2 Under the same assumptions as those in Theorem 1,
the estimator (3.2) is such that

vh . _ - L lcr(z)
m[gt(z:h: }‘) g(z)] N[ 2 f( ) ”KHZ] (3'3)
— h—0, A—1 ——{1-—-—-—-) ‘
as t— oo, , Y 00

Proof See Appendix A.2.

What distinguishes the dispersion in (3.3) from that in (2.6) is the
factor 1/2 , which is fundamentally due to the action of the discounting
rate. To be more precise, from the expression (A.5) in Appendix we
may derive the dispersion as t — 6o '

o? -
Jm ) - s} = oA kG2 +o(152) 64

Clearly, the variance increases as h, A-—-+0 which means that it is
proportional to the adaptive capability of the algorithm (3.2) as
realized by the factor (1 — A)/h.

In kernel estimation it is also customary to evaluate the bias 1nduced
by adaptation coefficients. We can show that for stationary processes,
only the bandwidth tends to affect the bias of recursive kernel
estimates.

ProPOSITION 3  Under the same assumptions as those in Theorem 1,
" the asymptotic bias of estimator (3.2) is

fz)

ltm E[g,(z) g(2)] = !1__ [ (z) +28’(2)f (Z)]
| x p2(K )+o(h2)+o(1;)‘)

(3.5)
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Proof See Appendik A3,

This result is not surprising because the bias is concerned with first
order moments and therefore does not depend on the form of weighting
observations. It should be recalled that smoothing coefficients ), s have
very different meanings and roles. _ _

For inferential purposes it is also necessary to have an estimator of the
variance 0X(z) = E[Z,— g(Z,_ 1 = z)]* of innovations. In the literature
this is usually derived as the difference between kernel estimators of
 82(2) = E(Z}|Z,_1 = z) and g*(2) (e.g., Auestad and Tjostheim, 1990).
However, Algorithm (3.2) directly estimates the prediction errors
alz) = Z,~g(Z,_, = z),sothatarecursive estimatoris simply given by

220 1 3N yietr 2 |
| 6, (z)=(1 )\).;)\ t[Zt g:—l(z)] (3.6)

=X67,(z) + (1= NF(2)

Also in this case, the condition Zo =a provides ‘a suitable starting
value: o¢(z) = o2

At this point one may wonder what the meaning of the above
framework is, because Algorithm (3.2) is designed for time-varying
systems, but its distribution (3.3) is obtained under the assumption of
stationarity. The answer is that (3.3) can be used in tests for statistical
significance and constancy of regression functions. In fact, in these cases
the null hypotheses involve constant parameters, and therefore sta-
tionarity. For example, when testing for Hy : g;,(zo) = 0 (which means
that Z, is white noise at time ¢, and conditionally on Z,_ ; = z¢) onecan
use the asymptotic confidence interval '

s (s s ) s

On the other hand, when testing the hypothesis of time-constancy
Ho: g1 (20) = 81,(20), two confidence intervals centered on g, (z0),
&,,(z0) must be constructed.

OptiMAL DESIGN From (3.4).it is clear that the design of the co-
efficients A, A should provide a suitable trade-off between adaptive
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capability and variability of estimates. In absence of a-priori informa-
tion on the path of the regression function, a data-driven approach
must be used for their selection. A suitable criterion is based on the
prediction errors (3.2b) evaluated at the empirical points z = Z,_ ;. As
in Grillenzoni (1994), this involves minimizing a quadratic functional
over the available sample {Z,,r=1,...,T}

T
hr,Ar = argmin Qr(h, \) = [Z @z = Z,-l)] (3.7)
t=2 :
where the algorithm for computing Q7(:) is provided by (3.2) itself.
Having d/z) = a,— [§,_1(z) — g(2)], it is clear that solutions of (3.7)
tend to optimize both model fitting and MSE accuracy of the recursive
estimates. In general, it may be viewed as a sequential cross-validation
procedure in which the omitted observation is always the last.

If minimization (3.7) is carried out iteratively, then resulting estimates
belong to the class of conditional least squares (CLS), analyzed by Hall
and Heyde (1980) and Tjostheim (1986b). Following this analysis, one
can conclude that under the assumptions of Theorem 1 and suitable
smoothness conditions for the loss function, such as:

(C1) T7'8Q+/8h, T~'8Q7/8) converge to zero with probability one
(w.p.1), as T— oc. '

(C2) Myr=T"'3Qr/0h 8 converges w.p.1 to a positive definite
matrix, as 7— oo. _ '

- (C3) limy_, ooSupe o€ " IMz(h*, A\*) — M7(h,\)| < 0, w.p.l for

(2™, A~ (1, )| <&,

the estimates Az, Ar in (3.7) converge w.p.l to the optimal values 4*,
A*. Under additional, more restrictive, assumptions it is also possible
to prove the asymptotic normality.

These results are significantly related to the properties of cross-
validation estimates of the bandwidth in cross sectional data. For exam-
ple, Hardle, Hall and Marron (1988) proved weak consistency and
asymptotic normality, even though for finite samples the approximate
distribution is related to a chi-square (Chiu, 1990). On the other hand,
in Tjostheim (1986b) the consistency of CLS estimates has been extend-
ed to processes which depend on initial conditions. This means that
it might be obtained even for non-stationary processes as (2.1) under
assumptions (A) and (C).
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4. SIMULATION EXPERIMENTS

Numerical simulations were performed to check the adaptive
capability of the non-parametric framework (3.2)—(3.7). In particular,
we were interested in checking if Algorithm (3.2) can estimate time-
varying non-linear regression functions, and if criterion (3,7) is able to
provide suitable values for the adaptation coefficients 2, A. All com-
putations were carried out with the MATLAB 4.0 package on a per-
sonal computer.
. We considered complex first order autoregressive processes of the
type

Z, = sin(t/16) sin(Z,_) + a;,, a, ~ 1U(-1,+1) (4.1a)

Z, = sin(t/16)log(|Z—1|) +a;, a; ~ TU(=1,+1) (4.1b)

Z, = sin(t/16) exp(—|Zaf) +a, @ ~IU(=1,+1)  (4.1c)

where common features are that inputs @, have independent uniform
(IU) densities with support (-~ 1,+1) and the parameter ¢(f) is a
sinusoidal function with period 100. The regression functions sin(z),
log(]z]), exp(— |z|) are non-linear, but seem relatively simple. In reality,
the combination with ¢(f) makes the global pattern of g, (z) complex. In
particular, at time ¢ = 50 their paths change sign (see Figs. 2a and 3a).
For processes (4.1), N = 100 realizations of sample size T = 100 were
generated with the initial condition Zo = ap. Although the parameter
@(?) meets the unit circle at ¢ = 25,75 we did not endountcred problems
of instability. Mean values and standard errors of the CLS estimates of
the adaptation coefficients are reported in Table I. We may see that all
estimates belong to the admissible range 0 < 4, A < 1 and the reduction
of the predictive statistic Qis significant (especially in the model (4.1b)).
'Figure 1(a, b) shows the kernel estimates of the densities of coeffici-
ents {Ax, Ak }) in the first simulation. Both were obtained with band-

TABLEI Mean values and standard errors of estimates (3.7) applied to procésses “.1n

Model b SE(h) AW SE(W) 0r(a) 0r(Z)  Kus  Nase
(4.1a) 392 094 .891 035 42.6 _53.1 30 .75
(4.1b) 206 082 813 d11 74.4 116, .10 .70
(4.1¢) 401 129 882 037 42.8 52.8 25 75

* Designates coefficients that minimize the integrated MSE, as obtained with a search procedure.
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FIGURE 1 Kernel density estimates of estimates (3.7): (a) Factor Ak, (b) Bandwidth .

width # = .03. Note that the distribution of A; is approximately
normal, whereas that of /i tends to be asymmetric. This confirms that
the convergence in distribution of bandwidth estimates is slow.
Figures 2 and 3 show main graphical aspects of numerical simulations
with models (4.1a) and (4.1b). Those concerned with (4.1c) are omitted
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FIGURE 2 Graphical aspecté of simulation with model (4.1a): (a) Theoretical regression
function g, (z), (b) mean value of estimates g,(z), (c) A typical realization of Z,, (d) Contour
of 3,(z), (e) Sections of g,(z) for~ 2 <z < 42, (f) Sections of g,(z) for 1 < 1< 100.
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'FIGURE 2 (Continued).
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FIGURE 3 Graphical aspects of simulation with model (4.1b): (a) Theoretical regression
function g, (z), (b) mean value of estimates g,(z), (c) A typical realization of Z,, (d) Contour
of g,(2), () Sections of g,(z) for — 2 <z < +2,(f) Sections of g,(z) for 1 << 100.
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because they are similar to those of (4.1b). Computations were based on
the estimates underlying the values in Table 1. In particular, given the k-
th realization Z;, and the coefficients hk, X obtained with (3.7), the
functions g, (z;) were generated with Algorithm (3.2) for a grid of values
—2<z;< +2; finally, their mean value g,(z;) was coniputed over k.

To comment on these results, we can state that the capability of
framework (3.2)—(3.7) to estimate regression functions that change
smoothly over time is satisfactory. First, we may note that global pattern
of g,(z) clearly resemble those of g, (z) (see Figs. 2b and 3b). Second, the
mean values hy, \y in Table I are close to the optimal MSE coefficients
and allow a significant reduction of the predictive statistic Q.
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A. APPENDIX: TECHNICAL DETAILS

A.1. Proof of Proposition 1

For ¢ sufﬁc1ently large we can introduce in (3.1) the apprommatlon
(3 A‘“‘) ~ (1 —)) and we may compute the estimated density on
lagged values of Z,, namely f o(2) =R~ (1= X) i, N K [(2~ Zi-1) /A
Now, using the notations f,=f,(z;h,A),8,=%(z;h,A) and K;=
K[(z— Z;)/h] we have '

(1 -
fi= (—17;—)"‘1 ()\ SoNE + Kt—l)

j=2
1— X
g, , @A
and L

NP R S (1-3
fx )\Z)‘ K_t—lzt+Kt—er

1=2

=AM+

x
Il

. . . 1—=A
=F7 Pt + Kz S an
B IFA A
=f11‘fx 8i— 1+( h )Kt— (Zt"‘gt—l)]
1 -
=§t—l +( )fr 1Kt—1at

which clearly provides (3.2) with the assumed notations.
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A.2. Proof of Ptoposition 2

From Proposition 1 the estimator (3.2) is equivalent to (3.1), which
converges in probability to'(2.5) as A - 1. This means that the estimates
7.(z), &,(z) are consistent and asymptotically normal as X — L, h—0,
th— 00. In Grillenzoni (1996) it is shown that the variance of
exponentially weighted statistics is of order 0(1 — A, 1/9), therefore we
may write

oz, ) — amehngW=m¢ﬁ‘ﬁﬁfma

Now subtractmg g2 from both sides of (A. 3) and multiplying by f,(z)
we have

Fi@ -2 =f!(§t-— -8+ Ui A )Kt'f-l(zf - 8i-1)

and using expression (A.l) and Z, = g(Z,.1= z) +a(z), the above
becomes

(1 ;,\) Kr’_—!]‘(ér-a —g)

fr(g: -8 = [)‘jp—l +

+ 4 ; o) K;-l-[a: - (é‘r-.l - 8)]

- which simplifies as -

% ra 5 ga 1-X),
Fei—8) = A cabir ) + 52K e

Since A < 1, this provides a stable difference equation whose solution is

. Lo (1=A
f,(g,—g)-=2/\' ( 'h )Ki—'lai

=2

From (A.3) a similar result holds by replacing #,(z) by f(z) and adding
a term o0,(1). Squarring the resulting expression we find that

1
) = (hf2 z Z MR 1 aaK -y 4 0,(1) (A 4)
i=2 j=2

h
'('1—;3\')'(@’:.'-8
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Since Z,_ and a, are orthogonal, for i.> j and Ji = set(Zi,Z,_ ) We
have

E(Ki-10/0;K;-1) = E [E(Ki-10i10/K)1|3;1)]
= E[K; 14;K1E (ai]3-1)] =0

and the same holds for i < j. Therefore, taking expectatlon in (A.4) we
obtain -

h
w—E = NU-DE (K2, )E(a?) + o(1
(e R hﬁ; (KZ1)E(a}) +o(1)
and under the assumption of stationarity for Z, which implies that of
- K,, we also have ‘

h 1= 1
Y Ef& -] = RF? (1- N9

E (K._)E(a;) +o(1)

(A.5)

Finally, the dispersion in (3.3) can be obtained from (1 — %) = (1 = })
(1+X and the well known result E(K?,) = E[K*((z - Z-1)/h)] =
hf(z)||K||2 + o(h) (see Hardle, 1990)

A.3. Proof of Proposition 3

Evaluation of bias involve first order moments. In order to exploit
the linearity property of the operator E(-), a linearization of §,(z) is
investigated. As in-Auestad and Tjostheim (1990) we consider a Taylor
expansion of g, in g = r/f of the form

r(J}t—f)Z

PO o L 2 B L I

f o f?
N (Jl—x_l_ ‘
P\ Va ’\/i)

+

(A6)
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the remainder term depends on the rate of convergence of estimates.
Now, as for (3.4) we can show that

lim EI(F, ~ ) = A kIR @)+ o 152)
lim E[(?, — N(f, —f)] = ;(I—I_J%Hmﬁf(z)g(z) + 0(1 ; A)

moreover, it is well known that

hz
B( —r) = 57" (2)ma(K) + o),

7 hz "
E(f,—f)= E‘f (D)pa2(K) + o(H?)
where p(K) = [. 22K(z)dz (see Hardle, 1990). Finally, the bias (3.5) can

be easily obtained by computing »” = ((g/)’)’ and substituting the
above expressions into (A.6).



