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This article develops recursive versions of generalized M-estimators for the parameters of dynamic
systems. The starting point is provided by the robust algorithms for autoregressive moving average
models proposed in the past decade. Using parallel calculation of “cleaned” input and output,
bounded influence regression is applied recursively. The resulting estimators have the same structure
as the weighted least squares but use filtered regressors, Monte Carlo experiments are carried out
to check the robustness of the proposed estimators and to compare their performance with that of
other methods. Numerical results are very encouraging.
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Anomalous observations (outliers) may occur in time se-
ries data for several reasons, such as measurement errors,
structural breaks, interventions, and so forth. Their pres-
ence can seriously affect least squares (LS) and maximum
likelihood estimates of the parameters of dynamic models,
making their use in forecasting and control unreliable.

There are two major approaches by which outliers in time
series can be handled. One is by robust estimators (e.g.,
Martin and Yohai 1985) and the other is by detection tech-
niques (e.g., Chang, Tiao, and Chen 1988; Abraham and
Chuang 1989). Robust methods keep fixed the structure of
the models and aim to provide estimates that have small bias
in the presence of outliers and are nearly optimal in the ab-
sence of them. On the other hand, detection techniques use
tests and diagnostics for identifying the position and the
nature of outliers and then accommodate their effects by
introducing dummy variables into the models.

In certain contexts, like adaptive control of engineering
processes, there is need for recursive (on-line) procedures
for outliers. By this I mean methods that update the in-
formation as more data become available, allowing for fast
calculation. Even though a detection method based on' time
series recursions was recently developed by Ljung (1993)
the on-line environment is more suitable for robust esti-
mators. Indeed, recursive algorithms of the M-type (in the
sense of Huber 1981) have been developed in the estima-
tion of system parameters (Ljung and Soderstrom 1983),
location coefficients (Cameron and Turner 1993), and state-
space models (Schick and Mitter 1994).

It is well known (Martin and Yohai 1985, p. 132) that
M-estimates are robust against innovation outliers (IO’s)
but are not robust against additive outliers (AO’s). The first
occur in the disturbances and in the inputs and affect the
output through the dynamic of the system but the second are
typically associated with measurement errors of both input
and output series. To cope with this problem, the solution of
generalized M-estimates (GM), a form of bounded influence
regression, was developed in time series analysis by Denby
and Martin (1979) and Martin (1980).

211

This article aims to derive recursive GM-estimators for
the parameters of the transfer function models of Box and
Jenkins (1976). The starting point is provided by the resid-
ual autocovariance algorithm designed by Bustos and Yohai
(1986) for univariate models. This belongs to the class of
GM-estimators, and its attractive feature is the application
of standard time series procedures to “cleaned” observa-
tions. After proper modifications, it is therefore suitable
for the recursive implementation.

With respect to the classical iterative algorithms used in
robust estimation, the recursive implementation makes cal-
culation faster because it avoids direct optimization. More
generally, it enables the dynamic effects of outliers to be
monitored and changes in the regression parameters to be
tracked (see Grillenzoni 1994). This is achieved, however,
at the cost of increasing the error variance for finite sample
size. ,

The article is organized as follows: Section 1 provides
background material for nonlinear regression; Section 2 is
concerned with basic aspects of recursive M-éstimation;
Section 3 deals with the central topic of the article; fi-
nally, Section 4 applies.recursive GM-estimators to sim-
ulated data. Throughout, applications to real data are pre-
sented.

1. ITERATIVE LS ESTIMATES
. Transfer function models developed by Box and Jenkins

.(1976, part IM) connect an output process {y;} to an in-

put process (possibly a control input) {z;} in the following
way:
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and
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=1 +0uB+- - +050,B%)e;, e~ IN(0,0%), (1b)
where E(x:a,) = 0for all ¢, s and {z,} has an autoregressive
moving average (ARMA) representation. The preceding no-
tations mean that {a:, e:} are independent normal (IN) dis-
turbances, {w;,8;,0;, ¢;; 04, ¢5;} are constant parameters,
and B is the backward-shift operator (Bbz; = ;).

Using polynomial operators of the type a(B) = (1 +
a1B + -+ + a;B¥), ‘model (1b) may be rewritten as
¢z(B)z: = 6z(B)e; and (la) may be decomposed as
Y+ = mg + ny, where m; = [w(B)/6(B)|zi—p and n; =
[6(B)/¢(B))as are independent subsystems. Conditions of
stationarity and invertibility then require that all polynomi-
als have roots outside the unit circle (i.e., stable roots), ex-
cept w(B), which only needs to have bounded coefficients.

For the developments of the next sections it is useful
to represent model (1a) in “regression” form. This follows
by noting that m, = (61m—1 + - - - + 6rme—r) + w(B)zs_y
and ny = (P1n¢-1 + - + dpns—p) + 6(B)as; hence, using
Yt = my + 1y, ONE may obtain

T 8
Yt = (Z dimyi + Zwﬂ't-b—j
=1

=0

P q
+ E ding_i + Z 0jat__]‘) +a Y Bz +a,
i=1 j=1
where 3" = [...6;...w;...¢;...6;...]is the vector of pa-
rameters and z; = [...7M4—i... Typj.. . Mpei... Gtj...]
is the vector of “regressors.” For given 3, the entries of z,
may be generated from the processes {u, z:}, as discussed
by Box and Jenkins (1976, p. 389); therefore, the “residual
of regression” associated with model (2) can be written as
as(B) = [y: — B'z+(B)] where z,(-) itself is a function of the
parameters.

Given a sample {y;, z:;t = 1,2,...,T}, the LS estimator
of 3 is the value that minimizes the functional Qr(3) =
Zthl a3 (). Following a Gauss-Newton strategy, the resid-
ual’s gradient must be defined; from Grillenzoni (1991), this
is given by

_ Oa(B)

&) = - 252 = GB)
. B
G(B) = dlag 5(—2.(%0(% I(r+s+1); 9‘(‘%5 I(p+q) ’ (3)

where L4 ,41) and I,y denote identity matrices of sizes
(r+s+1) and (p + ¢). From (3) it is clear that the
gradient {£;} is obtained by filtering the regressors {z;}
with a stable filter G(B) that depends on the parameters
B. Moreover, under Gaussianity, it is easy to prove that
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the expected value of the Hessian of Qr(B) is given by

E(&&)-T. T
The Gauss-Newton algorithm in the (k + 1)th iteration
then becomes » N

LS  Br(k+1) = Br(k)

T ¢ -1 7
+1 ét(k)ét(k)’] > Ek)a(k)  (4a)
t=b+1 t=b+1
&i(k) = Gr(k, B)a.(k)
ay(k) = [yt—,BT(k)lit(k)]v (4b)

where d;(k) are residuals, 2, (k) are the regressors generated
by Br(k), and Gr(k, B) is the filter (3) evaluated at the
same point (for details; see Grillenzoni 1991).

Under the assumptions of stationarity and invertibility of
(1a), the estimator (4) enjoys optimal asymptotic properties;
in particular, following Pierce (1972), I have :

VT(Br(k) - B] % N[0, E(§:£))" 0%

as (k,T) — o00. (5)

Note that, under the same assumptions, the processes
{2z:,&:} are stationary and the dispersion in (5) does not
depend on ¢. In particular, in the univariate case it turns out
to be a complicated function of 3 (see Martin and Yohai
1985, p. 127).

- Bustos and Yohai (1986) argued that when outliers are
of innovation type—that is, when the density of {a;} has
heavy tails (and its functional form is known a priori)—

- the LS estimator becomes inefficient compared with that

of maximum likelihood. On the other hand, a considerable
bias in both estimators arises when the processes {y;, z:}
are affected by AO’s (see Martin 1980). A contamination
scheme by AO for model (1) is given by

Y=y +tuwvy,  up ~ IB(1,7,),

v ~ IN(0, 02), (6a)
and
g = a3 + zwy, z ~ IB(1,m,),
we ~ IN(0,02), (6b)

where {us, 2} are Bernoulli (0-~1) processes and {v;, w;}
have variances larger than those of {y;, x;}, all the processes
being independent. In practice, with probability 1 — 7, =
P(u; = 0) the output y, is itself observed, but something dif-
ferent is observed with probability ,, = P(u; = 1). Scheme
(6) may also be used for defining the contamination by IO
in the same system; this follows by replacing in (1) the pro-
cesses {az, e;} with af = a¢ + usv; and € = ey + zewy.
The previous outlier classification is typical of univariate
time series. In the multivariate context, however, the sep-
aration between additive and innovation outliers is not so
precise. For examiple, if I have an AO in the input series
that is due to a real change, then the effect on the output
would be similar to that of an IO. For the sake of simplicity,
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Figure 1. Pilot Scheme Data: (a) Series y:, xi; (b) Residuals & of
Model (7).

in the following I only consider AQ’s associated with mea-
surement errors, hence affecting separately the two series
{zt, ye}.

Application 1. To introduce the problem of robust es-
timation, I begin an application to the dataset of Box and
Jenkins (1976) named “Pilot Scheme.” The case study in-
volves fitting a transfer function model from the operating
data of a control experiment in which the output is a poly-
mer viscosity and the input is the gas rate. Box and Jenkins
(1976, p. 451) argued that this is possible by taking as se-
ries {y;} the control errors (i.e., the deviations from target
of the actual viscosity) and as series {z;}, the changes in
the gas rate. These series are shown in Figure 1(a).

If one repeats the exercise of Box and Jenkins (1976,
pp. 451-459), including in the system the contemporaneous
term wyx:, one obtains

w= (") (G e,

(i) om0
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where the values in parentheses are ¢ statistics. The preced-
ing model has smaller residual variance than that of Box
and Jenkins. A plot of the residuals, however, reveals the
presence of some large outliers [see Fig. 1(b)]. This makes
the estimates in (7) unreliable.

In standard regression, a simple method of solving the
problem of outliers consists of discarding observations cor-
responding to big residuals. To preserve the autocorrelation
structure in time series, a related approach replaces the out-
lying data with their conditional means, given the remaining
observations (see Ljung 1993). This is particularly effective
for AO’s because I0’s theoretically affect all subsequent
observations. If the noise component has an MA(1) struc-
ture, however, as in (7), the effects of an a$ only concern
the pair y;, ys+1.

I tentatively replaced the data at ¢ = 83, 85; 162, 163; 263,
264; 305, 306 with the conditional means and reestimated
model (7). As a result the residual plot was satisfactory,
but the value of the MA parameter became negligible—
61 = —.004, 6 = 1.045; the other estimates remained nearly
unchanged—é; = .506, &y = —.101, &; = .102. These facts
suggest that outliers in the Pilot Scheme data may be both
of innovation and additive type; in particular, at t = 83, 85
one might have two AQ’s but the remaining might be IO’s.

In the following I shall use the preceding results as bench-

~ marks for the evaluation of the performance of alternative

robust estimators. In general, changes in the parameter esti-
mates could be used as diagnostic tools for outlier detection;
however; test procedures, as given by Chang et al. (1988)
or Abraham and Chuang (1989), are more powerful for this
purpose.

Application 2, The second application focuses on an-
other industrial dataset published by Box and Jenkins (1976,
p. 532) and named “Gas Furnace”” The case study con-
cerns a gas furnace in which air and methane were com-
bined to form a mixture of gases containing carbon dioxide
(CO3). In this system, the air feed was kept constant, but
the methane feed rate (input) was varied and the resulting
CO; concentration (output) measured. These series were in-
vestigated for the presence of outliers by Pena (1991), who
found influential observations around ¢ = 270. On the other
hand, Grillenzoni (1994) showed that the parameters of the
model identified by Box and Jenkins (1976, p. 381) become
time-varying in the second part of the sample, starting from
t = 167.

In this application I am interested in studying the effects
of AO’s; therefore, I have considered only the first 166 ob-
servations. For this subsample, the model specified by Box
and Jenkins simplifies as

e (7 8) ()
() ()

& =.141, ®)
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and {z;} becomes an AR(2) process (1 — 1.69B +
765B2)$t = €4, &e =.219.

Introducing the outliers y3, = —16, 29, = +6, which
are nearly twice the maximum values of the series, the LS
qstimates become 6; = .750, @&y = —.853, $1 = .737, and
6, = —.516. As in application 1, one sees that greatest ef-
fects are on the MA parameter. In Section 2, I evaluate
the performance of several robust estimators, keeping as a
benchmark model (8).

2. RECURSIVE M-ESTIMATES .

Discussion of M-estimates is a necessary introduction
to robust regression. The approach of Huber (1981) was
to modify the loss function of the LS -estimator in such
a way as to downweight anomalous observations, Letting
Pr(8) = SoF_, p(as(B)), with p(-) a differentiable symmet-
ric and convex function, M-estimates arise by numerical
minimization of Pr(-). Alternatively, one may solve itera-
tively the system of normal equations

T .
dPr(8)/08 =Y _ v(a:(8))€(B) =0, )

t=1

where 9(z) = 8p(z)/Oz is a bounded and odd function.

In Huber’s approach, this function has the form ¢u(z) =
sign(z) - min{|z|, ¢}, where c is a design constant that must
be selected according to the rate of outlier contamination.
To avoid dependence on scale factors, the term a;(3) may
be replaced by (a;/0); in this case, the parameter o can
be estimated by introducing in (9) the further equation
ST x(at/o) = 0, where x(-) is an even function that must
be related to (-).

Computation of robust estimates is based on iterative
algorithms that go back to Beaton and Tukey (1974) for
which recursive versions do not exist. Development of on-
line methods is needed for increasing the speed of calcula-
tion but also for monitoring the dynamic effects of outliers.
This may be useful for identifying their exact nature.

The derivation of the recursive M-estimator for (1) re-
quires that Huber’s solution be formulated in terms of
weighted least squares; namely, Q%(8) = S, [w;-a:(8)]2,
where 0 < w; < 1. This is enabled by the algebraic rela-
tionships between the two methods; in particular, choosing
weights of the form w(z) = ¢(z)/z with z = a;/o, one
may easily obtain system (9). With the new formulation,
however, it is possible to derive an explicit expression for
the iterative algorithm that minimizes Pr(3). This is simply
given by (4) with the gradients &, (k) multiplied by w?.

‘Once the M-estimates have been expressed in this general
form, the transformations of Ljung and Soderstrom (1983,
chap. 2) directly yield the recursive M-algorithm

RM  At) = B(t-1)+RE)w?- E@)a),
at) = v, —2()B(t - 1), (102)
R(t) = R(t—1)+wf &0)E(t),
£&t) = G(t—1,B)z(1). (10b)
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In (10), a(t) are prediction errors, Z(t)’ = [h(t—1)...a(t—
g)] is the vector of regressors, R(t) is the Hessian, and
G(t — 1, B) is the filter (3) evaluated at 3(t — 1). Compu-
tational details for the vectors Z(t) and £(t) were given by
Grillenzoni (1991). :

The choice of the weights may be related to the psi-
function by recalling that w(z) = ¥(z)/z. In particular,
Huber’s solution, ¢¥u(z) and = = a;/0, yields

if |a(t)] <cé(t—1)

1
'lf)c(t)={ o FUPRNTES B ay
c&(t— 1)|a(t)| if la(t)] > c ot —1), (11)

where &(t) is a recursive estimator of the scale and (c) is
the design constant.

A robust estimator for o may be based on Winsorized pre-
diction errors, defined as a*(t) = ¥gla(t)/6(t — 1)]6(t — 1)
[see Appendix A(1)]. Given the relationship w(z) = ¥(z)/z,
it is easy to check the correspondence &*(t) = w.(t)a(t);
with this, }he recursive version of the robust estimator
62 = T1Q% becomes

8(0) = 11t~ 1%~ 1)) + Th@aP. (12

This solution will be referred to as MSE and completes the
recursive M-algorithm (10)—(11).

The preceding formulation does not hold for other kinds
of psi-functions, such as the bisquare one proposed by
Beaton and Tukey (1974) [see Appendix A(2)]. The rea-
son is that Winsorization is a concept closely related to
¥u(-). The formal justification of (12) stems from the fact
that in Hubei’s approach the chi-function has the form
xu(z) = ¥%(z) — o, where o has to allow consistency in
the Gaussian case, namely, @ = E[y(z)] for z ~ N(O,
1). Thus, setting z = a:/o and o = 1, from the equation
St _, x(ai/o) = 0, one may obtain (12). Finally, it is worth
recalling that in the absence of outliers with w; = 1, the esti-
mator 6(t) is asymptotically unbiased [see Appendix A(3)].

A solution for & that is popular in robust applications is
the median absolute deviation (MAD) of residuals, defined
as MAD(dr) = med|d,— med(a;)|, where b+1 <t < T
and med is the median. In sequential form we can define

&, = MAD(ay)/.6745, (13)

where the constant .6745 is chosen so that for Gaussian er-
rors the preceding is a consistent estimator of o (see Hogg
1977). With respect to (12), the statistic (13) slows down the
computation speed in (10) but does not require the initial
value 5(0). A way of reducing the amount of extra com-
putation in (13) consists of using running medians of 3 as
discussed by Gebski and McNeil (1984).

3.. RECURSIVE GM-ESTIMATES

Typically, the need for GM-estimators arises when the
observed series {x;,y;} are affected by AO’s. In Model (1)
the contamination extends to the vectors {z;, &;}, and the
related M-estimates become nonrobust. The classical so-
lution is based on System (9) and consists of enlarging the
domain of the function #(-) so as to include regression vari-
ables (see Martin and Yohai 1985, p. 134). Hence, denoting



RECURSIVE GENERALIZED M~ESTIMATORS OF SYSTEM PARAMETERS

the enlarged psi-function by (-,
becomes

-), the modified system (9)

T
3 nlax(B)/o, &:(B)1:(8) =

t=1

A suitable choice for eta is the Mallows function nv(z,y) =
1(x)2(y), where ¥4 (+), 12 (+) are univariate and multivari-
ate psi-functions, respectively. The combination with Hu-
ber’s ¥u(-) makes my(-,-) odd in each variable.

The derivation of the recursive GM-estimator for model
(1) requires a simplification of the classical approach.
Looking at the previous set of equations, one realizes
that another solution may be obtained from the system
Elen[at(ﬂ)/a,gt(ﬂ)] = 0, where n(-,-) is a suitable
vector function. This approach provides, .in fact, a natu-
ral extension of the M-estimation and has some connec-
tion with the approach of Bustos and Yohai (1986). In
particular, using a vector of Mallows functions n(-,-)’ =
(- 9) .. .qm(-,-)], for each component i = 1, 2...(r +
s+ 1+ p+ gq), one may obtain

< at &it L ag &it
ZUM <?’U_i) ooi = Y ¢um (;)01/)11 (07) o;

t=1 t=1

T
= Y &(@aB) =0, (14)
=1

where o; are standard deviations of &;; and {£};,,a}} are
Winsorized processes. Now, system (14) provides a set of
normal equations that are similar to 0Qr /8,3 Yooy =

0; the corresponding iterative algorithm is therefore given
by (4) with & (k), a;(k) replaced by &; (k), a; (k).

Given the relationship & = G(B)z;, the computation of
the implied GM-estimator requires the vector of cleaned
regressors z; = [..m{_;...xy_y o...n_;...ai_;.. ] A
way of obtaining {z}}, the cleaned mput sequence, comes
from the iterative procedure proposed by Bustos and Yohai
(1986). The method computes residual autocovariance (RA)
estimates for ARMA parameters; with respect to model
(1b), it can be summarized as follows:

Step 1. Given initial estimates [¢y,0z;, 5], calculate
the residuals &, = ¢,(B)~'0,(B)x; for each t = (p, +
1)...T and clean them as &} = 1(é;/6¢)de.

Step 2. Generate the pseudoseries
and reestimate the parameters [¢,;, 8.5, 0] by applying the
Gauss—Newton algorithm to {%}}.

The steps are iterated until convergence of estimates is
achieved. Bustos and Yohai (1986) argued that the method is
consistent if {x,} has no outliers. It is robust in the presence
of AO’s only for autoregressive models, however, because
in Step 1 the effects of an outlier z{ spread out on the
whole sequence é;., b > 0. As-a solution to this drawback,
the authors proposed fruncated RA estimates, which arise

by approximating the function 6;'(B)¢,(B) with a finite

polynomial. Such an approach is not optimal and cannot be
applied if 6,(B) has roots near the unit circle.

&t = 05(B) " ¢s(B)é;
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By contrast, an “exact” solution can be obtained from
parallel calculation of the series {e},z}}. Basically, this
means that, given e} = ¢(e;/o.)o. at time (t), the quantity
x; is immediately computed as a linear prediction: z} =
(2 buiti_; + 20 ; Oz5€f_;) + €;. Next, at time (¢ + 1), one
calculates Ett1 = Tg41 — (Z ¢~’m$t+1—1 + Z 0$Jet+1—g)
which only depends on the outlier 27, ;. The advantage in
terms of uniform robustization is apparent.

In Appendix B, these ideas are extended to the GM-
estimation of the parameters of transfer-function models.
An iterative algorithm of Huber—Mallows type is described
in detail.

Parallel calculation. of cleaned input—output series is a
necessity in.the derivation' of recursive GM-estimators for
dynamic systems. To simplify the exposition, I assume that
{ys,2:} have the representation ¢(B)y; = w(B)zs—p +
6(B)ay, or 1 convert model (l1a) in this structure by mul-
tiplying by ¢(B) = ¢(B)6(B). Hence, combining the pre-
ceding discussion on the calculation of {e},z}} with the
recursive M-estimator (10), one may obtain

RGM a(t) = 2" () B(t - 1), (152)
R(t) = R(t-1)+d2)E ()€ (t), (15b)
Bt) = B(t-1)+RI W& (H)a(t), (150)
at) = y—BE)2 (), (15d)
a*(t) = vula®)/ot-1)6(t-1)
= wc(t)a(i), (15¢)
") = B2 (t) +a* (1), (15¢)
Ft+1) = [§°()...8% (¢ —b—1)
a*(t—q+1), (15g)
Et+1) = 2*(t+1)—i§j(t)é*(t+1—j), (15h)

=1

where .(t) and 6(t) are computed as in (11) and (12),
respectively. The extension to transfer function models can
be obtained from the algorithm in Appendix B; only one
modification concerns the calculation of the vectors 2*(t)
and £*(t) in Equations (15g) and (15h).

Some technical explanations are necessary to motivate
(15):

1. The recalculation of the prediction error in Equation
(15d) is made for improving the convergence of the estima-
tor 3(t) (see Ljung and Soderstrom 1983, P 316).

2. The introduction of the factor w?2(t) in the equations
of B(t) and R(t) is motivated by the goal of encompassmg
the M-estimator and minimizing Q} = 21_1 (a})2.

3. The structure of the gradient (15h) arises from the fact
that, when ¢(B) = §(B), one has G(B) = 6~ (B)I(p+s+q)
and consequently 9(B)&; = z;.

TECHNOMETRICS, MAY 1997, VOL.'39, NO. 2
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Table 1. Pilot Scheme Dataset: Parameter Estimates of Modsl (7)

Method Scale ] wo Wy 84 4
LsS* 506 —.101. .102 = —.094  1.045
LS . 517 =102 103 —.872 2251
M MSE 500 ~.00 .100 - +.282 297
" GM " 512 -102 103 +.123 798
RLS(t=T) = MSE 521 -—.098 .01 —.763 = 235
AM (t = T) " 525 —009 100  ~.314 871
RGM (t = T) . 524 —102 103~ —.049 - 653

NOTE: LS* = parameters estimated on data with outliers replaced by conditional means.

4. Computation of Z*(¢t — b—1) in (15g) is accomplished
by an algorithm that has the same structure as (15) and is
simultaneously applied to the model for {z;}.

Application 1. Table 1 summarizes the results of apply-
ing both the iterative and the recursive estimators to model
(7) of the pilot scheme data. From Appendix B, iterative
M-estimates were obtained with a procedure that alternates
the minimization of Q% = Y7, (a})? and the computation
of 62 = T-1Q%. GM-estimates differ inasmuch as they use
cleaned regressors in generating a:. Because the input is

(@
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a white noise, the related cleaned series was obtained as
2} = Yu(x:/65)06,. The MAD estimation of the scale pro-
vided &, = 29.7, and the tuning constant was chosen as
c=2.

Row 1 of Table 1 reports the benchmarks—namely, the
LS-estimates produced by replacing outlying data with their
conditional means. By comparing robust estimates, one sees
that the M-method tends to overestimate #; and to under-
estimate o. This may be an indication of inefficiency. Fi-
nally, the second block provides the value of recursive es-
timates at (¢t = T). '

Figure 2 shows the path of recursive estimates. All algo-
rithms were initialized with R(0) = I, an identity matrix,
and B8 (0)= Br, the biased LS-estimates in row 2 of Table 1.
The filter for the variances was (12) with ¢ = 2 and initial-
ized with previous robust estimates: 5(0) = 1, §,(0) = 30.
From Figure 2, (a) and (b), one sees that recursive LS are
much disturbed by outliers; however, in the case of system
parameters 61, wg, wi, they converge. The indications of
Table 1 are confirmed in that M and GM-estimates differ
significantly only for the noise parameter #;. In particular,
M-sequence does not converge to the benchmark in Table 1.
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Table 2. Gas Furnace Data With Outliers Added: Parameter Estimates of Model (8)

Method 8¢ _ wp . b1 ‘P o Px1 Pxz (o)
Ls* .695 -1.01 782 347 142 1.69 - —.765 219
LS .755 -.853 727 -516 1.21 728 +.117 712
M .702 -1.01. 715 .023 167 1.61 —.687 216
GM 692 -1.03 732 .386 A7 1.68 -.772 214
RLS 749 ~.823 581 -.399 1.32 .897 -.051 703
AM . .704 -1.00 745 187 165 "1.65 =721 176
RGM 692 —1.04 792 .387 A7 1.69 -.782 .201

NOTE: LS™ = parameters estimated on data without-AO's.

Because the results for wg, wy are similar to those of 6,
they have been omitted. Instead, the cleaned series 4*(t) and
2¢ of the GM-estimation have been displayed in Figure 2,
(c) and (d), together with the bands £:24(t). The distinctive
shape of a*(t) may be attributed to the design c = 2, which

is too restrictive because the outlier contamination is less .

than 5%.

Application 2. Regarding the gas furnace data with
outliers added, the results of the iterative estimation of
model (8) are given in Table 2. The first row reports the
. benchmarks-namely, the LS-estimates made without the
AO’s ygy = —16, 2§, = +6. Robust algorithms were imple-

(a)

0.9

-1.2 .
0 20 40 60 80 100 120 140 160

mented as in the previous application; however, the tuning
constant was chosen as ¢ = 3. We may see that GM is better
than M in approaching the “true” values.

Figure 3 shows the recursive estimates of model (8). Al

algorithms were initialized with R(0) = 10 - I, and 3(0) =

,@T, the values in row 1 of Table 2; robust ones used the
scale (12) with ¢ = 3. Dotted lines represent LS-estimates
made in the absence of outliers and serve as benchmarks.
As in Table 2, M- and GM-estimates .are similar for
the system parameters 6;, and wp and differ significantly
for 6;. Specifically, only the GM-method is resistant to
outliers.
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(12). LS™ (---) denotes the estimates of the model without out/lars added
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The conclusion of the preceding applications is twofold:
(1) There is agreement between the results of iterative and
recursive estimators, confirming the validity of the latter. (2)
Only the GM-method is robust for each kind of parameter.

Asymptotic Properties. Although simulation results in
Section 4 prov1de clear evidence of the robustness of Algo-
rithm (15) in the presence of AO’s, something must be said
about its consistency in the case of {y:, z;} without outliers.
Under suitable regularity conditions, Ljung and Soderstrém
(1983, p. 192) obtained the asymptotic distribution of the
recursive M-estlmator that minimizes the general loss.func-
tion P; = Ez,l p(a,) If p(-) is twice differentiable with
respect to ay, it is given by .

VHB() - B] 5 N[0, E(&:€))*x,],

K = E[P (ar)}?
* Bl (@)
This result may be applied to algorithm (10), provided that
Yu(-) = p/(-) be made differentiable everywhere. As was
discussed for (5), under the assumptions of stationarity of
the inputs, stability of the system, and absence of outliers,
the matrix E(&,£;) in (16) does not depend on (t).

The analysis of (15) is more involved because the vector
{&;} does not, in general, equate the gradient. In iterative
(off-line) form and in the absence of outliers, this algorithm
actually coincides with the RA estimator, for which some
asymptotic results were established by Bustos and Yohai
(1986). In particular, in the case of ARMA models and for
dr — o in probability, the distribution is given by (16) with
K, replaced by

(16)

,2_ E *(as/0, as- 1/0)]
{Elm(a¢/o,at-1/0)as-1]}?’

where 11 (z,y) = On(z,y)/dz. This result may be extended
to transfer function models and to recursive estimators be-
cause, for bounded initial conditions 3(0), and R(0), it-
erative and recursive implementations are asymptotically
equivalent (see Ljung and Soderstrom 1983). The applica-
bility of result (17) to Algorithm (15) is possible by tak-
ing the Mallows-type function n(z, y) = ¥u(z)¥u(y). Here,
one may also define the relationships between (16) and (17)
by noting that, for M-estimators, one has n(z,y) = ¥(z)y.
Indeed, using this in x,, I may obtain «, with a; just re-
placed by the rescaled residuals a;/o.

Apart from speed of calculation, an advantage of algo-
rithm (15) is the relative simplicity of its dispersion matrix

E(&:£.)"k,. With this, note that the efficiency of M and
GM-estimators with respect to the LS-estimator is 1/, in-
dependent of the system parameters 3. Because « is a func-
tion of n and therefore of 1, it is obvious that the degree
of efficiency crucially depends on the tuning constant ¢ (see
also Allende and Heiler 1992).

4. SIMULATION STUDIES

In this section I present simulation studies that were per-
formed to check the robustness in the presence of AO’s of
the estimators developed in the article. Computations were
carried out with the MATLAB package. on a 486-33 per-
sonal computer.

(17
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Experiment 1. This experiment compares the perfor-
mance of the iterative estimators developed in this article
with the robust estimates presented by Allende and Heiler
(1992).

I considered an ARMAC(1, 1) model contammated as in
Equation (6b):

Ty = ¢w_1 + Oer_1 + e, e; ~ IN(0,1), (18a)
and
1?: = T¢ + Uly, U ~ IB(l, 05),
‘v ~ IN(0,100;), (18b)

where ey, us, and v, are mutually independent. In practice,
the contamination is induced by a Gaussian white noise
with variance 100 times greater than that of {x;} and with
a proportion 7 = 5%. From (18), N = 100 realizations of
sample size T = 100 were generated independently. The
tuning constant of the function vy (-) was chosen as ¢ =
2, which is consistent with the contamination proportion.
Except for N, these designs are the same as the authors
mentioned.

Part 1. First I consider ¢ = 0 and # = .8 to also obtain a
comparison with Bustos and Yohai (1986). Mean values and
mean squared errors of the estimates are reported in Table
3. The first, two columns give the results as reported by
Bustos and Yohai and Allende and Heiler for the methods
LS, M, RA, and TRA (truncated RA). These were based on
Huber’s psi-function, on Mallows’s eta-function, and on the
MAD statistic as a measure of the scale. Instead, the last
row provides the results of our GM-algorithm using two
types of scale estimators. Note that the other authors did
not supply any estimate of the scale o.

By way of comment on Table 3, note that my algorithm
based on parallel calculation performs significantly better
than the RA and TRA ones, both in terms of mean val-
ues of the estimates and efficiency with respect to LS and
M methods. Moreover, the performance of the algorithm
does not depend on the scale measure. Note also that my

LS and M estimates for # are intermediate to those of the

other authors. Because experimental designs are identical,
their difference can be attributed to numerical factors, such
as random-number generators, optimization programs, and
computation algorithms, To compare robust estimates of
different experiments, their efficiency with respect to the
LS estimates is usually considered.

Part 2. 1 consider ¢ = .5 and 6§ = .8 for a second com-
parison with Allende and Heiler (1992). Their estimators
were based on the Huber—Mallows functions and were im-
plemented with the Hannan-Rissanen algorithm. They con-
sidered two scale measures—namely, MAD and Huber’s
proposal (in the last row). The results of the simulation are
reported in Table 4. )

‘By way of comment, one may note that GM-results of
the two authors are nearly equivalent and quite satisfactory.
As before, the difference between the LS-estimates may be
attributed to numerical factors. Further experiments have
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Tab)e 3. Mean Values (and MSE) of the Estimates of Experiment 1 With¢ = 0,0=.80=1

62 = MSE Ge x MAD
- BY AH ;
Method [} é 6. 4 . 6 o
LS .08 428 (17) .156 (.43) 2.96 (4.9) . .
M .10 443 (.15) 304 (.28) 1.24 (.07) 314 (27) 1.20 (.07)
RA .36 526 (.09) . . . .
TRA .40 530 (.09) . - . .
GM . 623 (.04) 1.13 (.03) 628 (.04) 1.12:(.03)

NOTE: BY = results of Bustos and Yohai (1986); AH = results of Allende and Heller (1992).

shown that the resistance to outliers of the GM-methods
drastically improves by reducing the value of the parameter
6 or the variance of the contamination process. We point out
that the design conditions in this experiment are the most
unfavorable ones considered by Allende and Heiler (1992).

Experiment 2.
(14) the simulation conditions were redesigned as follows:
(1) N = 50 replications of sample size T = 200 were con-
sidered. (2) Few outliers were introduced at fixed instants
of time. This was done for monitoring the dynamic effects
that outliers have on the path of recursive estimates.

The experiment deals with model (18a) contaminated by

(19)

This choice was motivated by the fact that in the previous
"simulation I had max|z;| =~ 8. All algorithms were ini-
tialized with the conditions 3(0) = 0, R(0) = I; robust
ones used the scale (12) with ¢ = 2. Figure 4 displays the
mean values 3(t) = N~} Zf’___l fi(t) and the standard errors
SEg(t) = {N"1 N [3:(t) — B(t)]2}*/? of the recursive es-
timates.

Figure 4, (a) and (b), shows the time paths of 4(¢) and
6(t); note that the performance of the GM-method is by
far the most satisfactory. Figure 4, (c) and (d), provides
the standard errors; it shows that the efficiency of recur-
sive M and GM is similar. Finally, Figure 4, (e) and (f),
displays the mean values of the scale estimates obtained
with (12) and (13), and initialized with 6.(0) = 1. Be-
cause the MAD statistic is. based on the median, it is nat-
ural that its time path is oscillatatory, especially at the be-
ginning. This feature is partially retained by the average
5(t) = N"' L, 6i(t).

Experiment 3. In this simulation I evaluated the perfor-
mance of the iterative GM-estimator described in Appendix
B on the simplified transfer function system

zho =12, 2§y = =16, x3pp =24, xf5 = —16.

.5
Yyt = m L1 + Gy,

zy ~ IN(0,2%), -~ a ~ IN(0,1). (20

In testing recursive algorithms (10) and,

Both series {xz;, i} were contaminated as in scheme (18b),

and simulation conditions were the same as in Experiment
l—namely, N =T =100, c = 2.

Numerical results are summarized in Table 5. Despite the
high relative variance of the contaminating process and the
fact that both input and output of the system were con-
taminated, note that the performance of the GM-estimator
is quite satisfactory. This behavior was insensitive to the
choice of the scale measure.

Experiment 4. This simulation is concerned with the re-
cursive estimation of (20), contaminated by
ygo = 12!

—_ o __ —_
z3 = Z79 = Y50 = —16,

Tho = a0 =24, {50 =yl =-16.  (21)
This choice is motivated by the fact that in system (20) I
had max |y:| = max |z;| = 8. The simulation conditions are
the same as in Experiment 2—namely, N = 50, T = 200,
and ¢ = 2. '
Numerical results are given in Figure 5. As before, Figure
5, (a) and (b), shows the mean values (t), ©(t) of recursive
estimates, and Figure 5, (c) and (d), displays the correspond-
ing standard errors. Figure 5, (e) and (f), provides the paths
of the mean values 5(t) obtained with (12) and (13). As in
the previous case, the performance of the recursive GM-
method is by far the most satisfactory. Results shown for
parameter § in Figure 5a are better than those shown for 6
in Figure 4(b), although both make the system nonlinear in
the parameters. ‘
Experiment 5. Final simulation with iterative estimators

considers the system

R (1+.5B)
“=aTsB T 1-sB)

ag,

zy ~ IN(0,2%),  a; ~ IN(0,1), (22)

where the contamination scheme for both {z;,y:} is (18b).
The simulation conditions are the same as in Experiments 1
and 3, and robust estimators are described in Appendix B.

Table 4. Mean Values (and MSE) of the Estimates of Experiment 1 With¢ = .5,0 = .8,0 = 1

) Allende -Heiler Proposed method
Method Scale ¢ 6 ¢ 6 o
LS . .158 (.14) 143 (.47) 469 (.15) —-.29 (14) 3.81 (9.4)
M MAD A77.(.12) .149 (.46) .658 (.04) .201 (.39) 1.27 (.11)
GM MAD .466 (.02) .665 (.04) .502 (.03) .657 (.06) 1.15 (.05)
GM MSE .387 (.04) .875 (.02) 501 (.02) .621 (.07) 1.21 (.07)
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Table 5. Mean Values (and MSE) of Experiment 3 withé = 8, w = .50 = 1,065 = 2

Method Scale 1) w o Ox
LS . 460 (.37) 144 (.15) 3.98 (10.6) 4.56 (8.36)
M MSE 572 (.14) 341 (.07) 1.61 (.43) "
M MAD 534 (.15) .395 (.03) 1.52 (.35) .o
GM MSE .783 (.003) .456 (.008) 1.25 (.08) 2.07 (.03)
GM MAD .780 (.003) 487 (.007) 1.22 (.07) -+ 2.04 (.06)
Table 6. Mean Values (and MSE) of the Estimates of Experiment S Withé = w = ¢ =0 = .5
Method Scale - 6 w ¢ ‘] o ox
LS . .281 (.25) .145 (.15) .309 (.23) —.13(.59) 3.93 (9.8) 4.56 (8.4)
M MSE 512 (.05) 374 (.06) 521 (.06) ~.03 (.35) 1.42 (.23) .
M MAD 576 (.03) 443 (.03) .559 (.04) +.06 (.22) 1.23 (.09) .
GM MSE 492 (.02) 466 (.01) 489 (.02) . .351 (.05) 1.19 (.05) 2.08 (.03)
GM MAD 493 (.02) 472 (.01) 481 (.02) .383 (.04) 1.13 (.04) 2.04 (.06)
Table 7. Mean Values (and MSE) of the- Estimates of Experiment 6 With6 = w = ¢ = 6 = .5
Method ) w 13 0 o ox

LS 476 (.04) .201 (.09) 443 (.04) —.24 (.59) 2.96 (3.8) 3.20 (1.5)

M .586 (.01) 504 (.01) .619 (.02) .06 (.20) 1.15 (.03) .

GM 483 (.01) 509 (.01) 494 (.01) 460 (.01) 1.05 (.01) 1.97 (.01)
RLS(t=T) 481 .200 423 —~.244 3.15 3.39
RM(t=T) 535 439 579 .051 1.22 .
RGM(t=T) 468 496 485 453 1.07 2.08

Numerical results are summarized in Table 6. As in the
previous experiments, one may see that greatest differ-
ences between M and GM-methods concern the parameter
6. Moreover, the fact that GM-estimates of 6 are not as
good as for the other parameters may be attributed to the
design conditions in (22), which are relatively unfavorable.
Best performance is provided by the solution with the MAD
measure for o, 0.

Experiment-6. 'Final simulation with recursive estima-
tors concerns System (22) contaminated as in (21). Experi-
mental conditions are the same as Experiment 4; in particu-
lar, robust algorithms used the scale (12) with ¢ = 2. Figure
6 reports the mean values of their estimates; one sees that
the performance of the GM-method is satisfactory for.each
parameter.

To check the results.-in Figure 6, I also applied iterative
algorithms to the same simulated data; the estimates are in
Table 7. This enables one to have a precise comparison of
the performance of on-line and off-line implementations.
Note that Figure 6.and Table 7 do provide the same indica-
tions; in particular the GM-method is robust in the presence
of AQ’s for every parameter, § included.

5. CONCLUSIONS

In this article, I have developed robust recursive estima-
tors for the parameters of dynamic models. The main fea-
ture is weighting and filtering data with factors that reduce
outliers in the nonobservable regressors. Simulation experi-
ments have shown that contamination by AO’s has dramatic
effects on LS and M-estimates; however, a substantial bias

reduction may be achieved with the GM-algorithm. Funda-
mental results are as follows:

1. For univariate models and iterative estimation, the
proposed method is better than that of Bustos and Yohai
(1986) and is at least as good as that of Allende and Heiler
(1992). This situation legitimates the basic philosophy - of
the method.

2. For dynamic systems and recursive estimation, the
proposed algorithms are at least as good as their iterative
versions but are much faster. This remark encourages their
use in practice, in particular in the control of industrial pro-
cesses.

Further developments concern tracking of time-varying
parameters. In this context, recursive algorithms must be
made adaptive by discounting past observations. As shown
by Grillenzoni (1994), robustification has a smoothing ac-
tion on recursive adaptive estimates and may therefore be
useful for systems that change slowly over time.
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APPENDIX A: TECHNICAL NOTES

(1) Winsorization. This concept is related to that of
trimming but differs in that weights assigned to outliers
decrease more smoothly. In particular, although trimming
simply discards observations that exceed a given threshold
(c), Winsorization replaces them by the threshold value. In
terms of psi-functions, the latter agrees with the Huber so-
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lution, whereas trimming corresponds to a function defined
as Yr(z) = 2z for |z| < ¢ and 0 elsewhere (Dudewicz and
Mishra 1988, p. 740).

(2) Bisquare. The psi-function proposed by Beaton and
Tukey (1974) is defined as ¥g(z) = z[l — (z/c)?]? for
|z| < c and O elsewhere. This function is nonmonotone and
discontinuous in |z| = c, and therefore its derivative ¥} (z)
may be negative when it exists. This feature raises serious
problems to-the Gauss—Newton estimator, which minimizes
the functional Pr = ZtT=1 p(a:) and whose Hessian matrix
is given by R(t) = R(t — 1) + p"(a(t))€(t)€(t)’ (see Ljung
and Soderstrom 1983, p. 97). In fact, taking o (-) = ¢(-),
the matrix R(t) would not be longer positive definite and
convergence fails. For this reason, this article is only con-
cerned with the Huber proposal.

(3) BLUS Residuals. As shown by Brown, Durbin, and
Evans (1975), the recursive LS-estimator of o is unbiased
if it uses standardized predlctlon errors. In (10) these resid-
uals are defined as a(t) = a(t) - [1/@2(t) + £(t)R(t —
1)~1€(t)]"/2 and are best linear unbiased and spherical
(BLUS) for each t > O——namely, (Be|Ys—1) r—by Yoz, -+ ) ~
IN(0, 02). Now, having R(t)~! — 0 as ¢ — oo, asymptotic
unbiasedness is allowed even by nonstandard errors a(t).

APPENDIX B: AN ITERATIVE GM ALGORITHM
FOR SYSTEM (1)

Because a preliminary robust estimator for the parame-
ters of the model of the input series is needed, I rewrite
Equation (1b) in regression form as z; = o'x; + e;, where
o = [¢m1 teagees ﬁzq] and xi = [-'L't-—l Cergeee et_qw]. Now,
the iterative GM algorithm for system (1) consists of the
following steps:

(0) Get initial estimates &, ﬁT, ., & by applying LS to
the contaminated series {zg, y?}.

(1) Compute the residual of regression é; = z; —
and clean it as &} = ¥y (é;/ Ge)Ue

2) Compute the predlcuon &f = Gk} + €} and update
the vector %y, = [&7...&_, 4]’

(3) Repeat steps (1)—(2) for each t=(ps+1),...T s0 as
to obtain the pseudo inputs {£7}; with this generate my =
iy bl + Y5 s} _,_; by letting m*; =0 for i =
1...r.

(4) Compute the residual a; = y;
a; = Yu(a:/6)s.

(5) Compute the prediction §; = B2} +a; and the aux-
iliary variable ﬂt =gf — M} w1th these, update the vector
of regressors 2, = [/h} ... &}_,... A}

&Lk

— By and clean it as

...... a_pial-
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(6) Repeat steps (4)~5) for t = (b+1),...T so as to ob-
tain the pseudo outputs {§} }; next reestimate the parameters
a, 3; 0., o by applying LS to the series {&}, 7}

(7) Repeat steps (1)(6) until the estimates of the noise
variances o2, o2 converge.

From step (6) it is clear that the loss function im-
plicit in this algorithm is Q%(8) ST (a})?. The
method then proceeds by alternating the minimization of
i [¥ula/6r)ér)?, with a; ~ B'z}, and the com-
putation of 62 = T~ 3T (a2)2. The corresponding M-
estimator differs inasmuch as it does not use cleaned re-
gressors z; in the computation of residuals a;.

[Received May 1994. Revised Februgry 1996.]
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