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Abstract 

A framework for testing in real time (on-line) the statistical significance of the causality 
between nonstationary random processes is developed. The process representation is that 
of transfer function (TF-ARMA) models; the causality parameters are prediction error 
variances and dynamic multipliers; the estimation algorithm is that of recursive nonlinear 
least squares (RNLS). The basic step is made by analyzing the asymptotic distribution of 
this estimator under an assumption of stationary, but in operative conditions given by 
discounting past observations with exponential weights (EW). An empirical example, 
based on real economic time series, illustrates and checks the method of on-line inference. 
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of causality; Significance bands 
JEL classification: C22; C32; C52 

1. Introduction 

Recursive estimators with adaptive implementation are well-established 
methods for estimating dynamic models whose parameters change over time. As 
shown in the books of Ljung and Sfderstr6m (1983) and Goodwin and Sin 
(1984), the various recursive algorithms have formal and practical connections; 
however, they are somewhat different from a statistical viewpoint. While the 
Kalman filter (KF) assumes linear dynamics for the parameters and updates its 
covariance matrix with fixed quantities, recursive least squares (RLS) with 
weighted observations do not assume explicit laws of evolution and their 
covariance matrix changes adaptively. Weighted RLS are then analogous to 
modem techniques of nonparametric regression; specifically, the problem of 
designing the discounting rate of observations is similar to the problem of choice 
of the bandwidth in kernel-type estimators (see Hfirdle, 1990). In both cases, 
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a suitable trade-off between bias and variance of the regression function must be 
achieved. 

In this paper we focus on the RLS algorithm with exponentially weighted 
(EW) observations, i.e., in which the weighting sequence of {Zt-k}, 0 < k < t, is 
given by {2'-k}, 0 < 2 < 1. Unlike rectangular windows, this form of discount- 
ing is easy to manage on-line and, owing to its concentration around most 
recent observations, is powerful in estimating models subject to sudden changes 
and nonlinear oscillations. More generally, it is possible to show that the 
EW-RLS includes the KF as a particular case, being the underlying dynamics of 
parameters conditionally Gaussian (see Grillenzoni, 1994). The statistical be- 
haviour of these algorithms in estimating regression models subject to several 
conditions of evolution has been investigated by Benveniste (1987), Niedzwiecki 
(1988), and Gunnarsson and Ljung (1989). These studies have provided theoret- 
ical rules for the optimal design of the factor 2. In econometrics, Zellner, Hong, 
and Min (1990) have developed an original Bayesian design of the EW-RLS and 
have compared its forecasting ability with that of RLS and KF having an 
analogous design. 

In this article we focus on the transfer function (TF) model of Box and Jenkins 
(1976), estimated by recursive nonlinear least squares (RNLS) of the 
Gauss-Newton type. Even though the analysis is developed only under the 
assumption of constant parameters, complex indicators of causality concerning 
the predictive effect and the multiplicative impact of the input on the output are 
considered. The asymptotic distributions of adaptive statistics of F, X 2, T type 
are investigated, finding that their degrees of freedom crucially depend on the 
effective sample size of the algorithm given by (1 + 2)/(1 - 2). 

An inferential framework for testing in real time the statistical significance of 
the parameters of time-varying dynamic models can be easily developed with the 
results of the paper. In an extended numerical application on a data-set pub- 
lished by Liitkepohl (1991) we investigate the relationships of causality between 
two nonstationary economic processes. However, other important applications 
are represented by (i) testing for the stability over time of the coefficients of time 
series models and (ii) detection of ruptures in dynamical systems applied to 
industrial processes. In all cases, the statistical procedures directly monitor the 
trajectories of recursive parameter estimates. 

2. Off-line analysis 

Consider two stationary stochastic processes {yt, x,} having a cross- 
covariance function E(y, xt-k) = ~xy(k) null for every k < b/> 0 (i.e., without 
feedback y~ =~ xt) and absolutely summable for k I> b (i.e., Yt, x~ are jointly 
ergodic). Assuming zero means and gaussian distributions, these features lead to 
the representation 
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TF 

Yt = 
(~o + colB + ... + casB s) 

(I - 61B . . . . .  6,B') x~-b 

( l + O t B +  "" + OqB q) 
+ at ,  at "- I N ( 0 , o ~ ) ,  ( l a )  

(1 - ~ t B  . . . . .  cppB p) 

ARMA 

( l  - . . . . .  y ,  

= (1 + OIB + ... + O#BO)e,, e, ,,- I N ( 0 , o ~ ) ,  ( l b )  

where (AI) (6,O,O,O,O)(B) are stable polynomial in the lag operator B 
(Bx, = x t -  i), (A2) to(B)B b is a nonmonic polynomial with bounded cocflidenis 
and delay factor 0 ~< b < oo; finally, (A3) the pairs (to,6), (0,0), (0,~) are 
relatively prime. It is quite clear that under the stated assumptions the paramet- 
ric covariance functions of { yt, x, } decay exponentially to zero (for details, see 
Box and Jenkins, 1976, Part III). 

The two main elements that characterize the causal action xt =~y, are the 
predictive effect and the multiplicative impact. With respect to the representa- 
tion (1) these are summarised by the parameters 

,4 = (a~ - a~ z) = E[y~ ly,-i;  i > 13] - E [ y ~ t y ~ - i , x t - j ;  i > O,j  >1 0], (2a) 

g = - ~l . . . . .  ~, ,] vl,, vk = ~v~_~ + oh,, (2b) 
k=O j = l  

where/t is the reduction in the variance of the one-step-ahead prediction error, 
{ vk } is the sequence of dynamic multipliers, and 0 is the steady-state gain (that is, 
the global change in y, yielded by an unitary increment of x,). 

Both (2a) and (2b) are indexes of causality, but with different operative 
meanings. The gain is a typical parameter of control, and when 101 > 0, we also 
have ,4 > 0; the converse, however, is not necessarily true. Examples in this sense 
are provided by response functions of the type v (B)=  (COo- cotB~)B b with 
COo ~ ~ ,  that may be encountered in many applications (see Grillenzoni, 
1991a). More generally, the tendency to yield 0 "~ 0 concerns sequences {vk} 
which decay rapidly and nonmonotonically, i.e., corresponding to polynomials 
~(B) with negative or complex roots far from the unit circle. These remarks 
about ,4, 0 enable us to qualify the concept of causality of Wiener-Granger (see 
Granger and Newbold, 1986) that was originally based on (2a) alone. In 
particular, from the viewpoint of economic policy it may be necessary to 
establish if an input xt has a positive impact on the output y,, and not whether 
x, may improve the predictions of y,. 

Given the complexity of the likelihood function associated with (l), a suitable 
estimator for the vector ~' = [~t -.- ~,, O~o,Oh ... o~, 0t  ..- 0p, 0t ... 0q] is 
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that of nonlinear least squares. Denoting by (N, k) the number of observations 
and iterations it becomes 

NLS 

] ~slk + 1) = ~Ntk) + ~k {,(k){tlk) {,(k)at(k) , (3a) 
t t 

~b(B) (mr- x,-b-~): 
~' (P) '=  O(B)~(B) I ... m,_ , ,x ,_~ . . .  

1 
(nt-t ... n,-p, at- t  ... at-q)] (3b) 

O(B) 

where mr= [to(B)/6(B)]Xt_b, nt =CO(B)/c~(B)]at are auxiliary regressors, 
~t(~) = -- Oat([I)/O[ I is the gradient, and 0 < ~t k < o0 is the stepsize. Clearly, 
under assumptions (A), the process {~t} is still stationary and ergodic; this 
provides the basis for a theorem established by Pierce (1972) and reconsidered in 
Poskitt (1989). 

Theorem 1. Let {xt,yt} be ergodic processes that satisfy the stable and identified 
representation (1); then the estimator (3) is consistent for [I and, more generally, 

Nl /2 [ f lN(k ) - / / ]  L , N [ 0 ,  E(~,~;)- to2] as k , N - , o o ,  

where E (~t ~;) is block-diagonal for the independence of { mr, xt } and { nt, at }. 

Since quadratic transformations of ergodic processes are also ergodic, the 
above result follows by combining the limit theorems for the sums of ergodic 
sequences with the properties of convergence (minimization) of the algorithm (3) 
(see Grillenzoni, 1991b). Finite-sample properties have not been widely investi- 
gated in the statistical literature, but they should be similar to those established 
for ARMA models. 

Given the parsimony of representation (1), with (3) we may define efficient and 
asymptotically unbiased estimators for the causality parameters (2), namely 

A ~ z]s{k) = [~ (k )  - ~ ( k ) ] ,  ~N(k) = ~ ta,(k) ~j(k). (4) 
i=o / j = o  

As a consequence of the theorem they enjoy optimal properties, in particular we 
have: 

Corollary 1. Under the same conditions as Theorem 1, the estimator (4) is 
consistent for the gain g = g( lJ) and, more generally, 

Nt/2[0r~(k)-g' l  l. ,N , E(~,~[)-la z as k , N ~  oo. 
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Proof. Since g(-) is continuous, by Slutsky theorem we have that 

(/IN P ' P) ~(On p 'g) as k, N -~ ~.  

To prove the distribution, we consider a Taylor expansion of O(.) in iS, 

g(~N) = g(~) + (ISN --/~) + Op(N- t), (5) 

where ]~s -/~[ = Op(N-1/2) for the consistency of/iN(k). Now, multiplying by 
N I/2 w e  get 

N l / 2 ( g  N - -  g)  = NII2(~ N -- [ J ) ~ ) + O p ( N - '  l og \  1/2). 

The above equation can also be rewritten as Ys =x'sc +oo(1), where c is 
a constant vector. Since xN L ,x Gaussian, from the Cramer-Wold lemma we 
have YN L ,X'C with the same distribution; the asymptotic dispersion being 
c'E(xx')c. 

While Corollary 1 provides the necessary background for making inference 
on the steady state gain O, it is well-known that powerful procedures for testing 
the significance of A involve statistics of F-type. Indeed, under the conditions of 
the theorem, in particular that of independent normal (IN) disturbances, and the 
null hypothesis Ho: 0 .2 = 0 "2, for N sufficiently large (but finite) we have 

[ (N-b)ZlN(k)/m ] L , F ( m , N _ b _ m _ n ) ,  (6) 
Fs(k) = iN - b ) '~ ) / -~ : - f f - -m- -  ni 

as k --, oo. The quantities m = (r + s + 1) and n = (p + q) provide the degrees of 
freedom. 

3. On-line analysis 

In this section we begin to extend the above results to models estimated by 
recursive algorithms with discounted observations. As shown in Ljung and 
Gunnarsson 0990), this implementation is suO~ciem for tracking time-varying 
parameters, although it is not generally optimal. In order to simplify the analysis 
and to obtain statistical results as rigorous as possible, we commence with 
a linear model of ARX type, 

Yt = (0trY,- l + "'" + ~,,..Y,-p .t- ¢OotXt-b + "'" + (o,txt-b-~) + at 
d©f 
=/l [z ,  + a,, a, ,,, IN(0,o2) ,  (7) 
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where z; = [Yt-1 ---, -.- Xt-b-s] is the vector of "regressors'. For this model, 
the RLS algorithm with exponentially weighted observations can be defined in 
two equivalent ways (Brown, Durbin, and Evans, 1975; Ljung and S/Sderstr6m, 
1983): 

! 

~, = R, -1 ~ (z,2'-'y,), ~, = ~,-1 + R ;  lz,~,, (8a) 
1"=1 

R, = ~ (z,,tt-'z',), R, = 2 .R ,_ ,  + z,z;, (8b) 
t = l  

s , =  2, (8c) 
t = l  

4 = ( y, - 1), al = 1 + z;a-_lt 4 ,  (Sd) 

where a, are prediction errors and ~t = (Yt - p[z,) are recursive residuals; S~ is 
the weighted sum of squared residuals, generated with the latest parameter 
estimate. 

The properties of this algorithm have been investigated in depth only under 
an assumption of constant parameters, a condition of ergodicity for the input, 
namely, 

(B1) # t = p ,  a t = a ,  (B2) Y'.lrxx(k)l< ~ ,  (9) 
k 

and ~ - 1. The general conclusion was that the RLS algorithm is asymptotically 
equivalent to the OLS estimator. In the following we briefly comment on (8) 
when 2 < 1: 

1) The two versions of the algorithm differ only at the computational level, 
provided that both initial values #o and Rff ~ are zero. The right one clearly 
indicates that in order to track the changes (#t - #t- 0, the condition Rt < 
(i.e., 2 < 1) must hold uniformly. Since #o and Ro have a significant role in the 
tracking (see Grillenzoni, 1994), in the sequel we shall only refer to the reeursive 
implementation ~t = ~t- t + R7 lz,~it. 

2) The expression (Sa) on the left can be formally obtained by minimizing the 
functional St(#) = ~ 2'- 'a~(#) with respect to #. Even though S, on the left is 
only a function of the latest estimate/It, the version on the right (derived in 
Ljung and S~iderstriSm, 1983, p. 434) shows that ~ = S,/~.~ A t-" is suitable for 
tracking the noise variances {a~} in the model (7). 

3) The standardized prediction errors at = (~t'af) 1/2 = tit[2/(2 + z~Ri'_~Zt)] 1/2 
have been emphasized by Brown, Durbin, and Evans (1975) and Dufour (1982) 
by showing that, under (9) and 2 - - 1 ,  their conditional distribution is 
(t;t I zt, zt- t ... ) "" IN(0, a:). However, given the relationship (Sd), as 2 ~ 1 these 
properties hold asymptotically even for the terms {at,~t}. 
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The central purpose of this paper is that of making on-line inference, in the 
sense of deriving standard errors for the reeursive estimates { ~It } and testing for 
their statistical significance. In this context, the basic null hypothesis for the 
parameters is given by H0:~1 = 0, which belongs, in a strict sense, to the 
condition of stationary/~, = p. It is necessary, therefore, to analyse the distribu- 
tion of estimator (8a) under the assumptions (9) and to evaluate the action of the 
discounting rate 2 on the mean squared error E I1~,- ~112. The next lemma 
quantifies the effect of the factor (1 - 2) on basic statistics involved in the 
EW-RLS algorithm; the proof is given in Appendix 1. 

Lemma 1. Let { yit, xt } be Gaussian ergodic sequences, with covariance functions 
(auto and cross) decaying exponentially at a rate 0 </~ ~< 2 < 1; then the sample 
covariance 

! 

~it(0) = (1 - -  2) ~ 2t-txityit p "yx,(0) "4- O p ( l  - -  2) 1/2 as t ~ oo. 
¢ = 1  

Since rigorous asymptotic results for the RLS algorithm applied to ARX 
models are only available under consistency conditions, we need to let 2 --, 1. In 
order to avoid the convergence to the OLS estimator, however, we have to rely 
on a double limit opera~or l ima, l limIt_.,~ f(t, 2) in which there is not exchange- 
ability of the order, and the accumulation point of lima is external to the interval 
of definition of 2 ~ (0, 1) open. In practice, since (1 - 2) has the same role as does 
the bandwidth in a kernel-type estimator, analogously to the analysis of non- 
parametric regression one should have lima-.~ lim,_.~ [1/(1 - 2)t] = 0 (see 
H/irdle, 1990). We now reconsider a result outlined by Niedzwiecki (1988). 

Proposition !. Given the linear model (7), under the stationary assumption (9) the 
recursive estimator (8) is nonconsistent when 2 < 1, and more generally, 

i .e . ,  

(l -- 2)-l/2[~It -- ffl t '~N[0,½E(~hz;)-Io'z] as t -~oo ,  2 ~ 1 ,  (10a) 

/1 - 2'~ , I 2 2)3/2 l i m E [ ( / ~ , - / | ) ( ~ , - ~ ) " l = ~ T - ~ - ~ ) E ( z ,  zit)- a + O ( 1 -  . (lOb) 
t ' -*  O0 

Proof. It may be easily seen that (8a) can be rewritten in the form 
( l - 2 ) & ( ~ - ~ ) , = ( 1 - 2 ) ~ ' , = 1 2 ' - ' z r a , .  Now, by Lemma 1 the terms 
(1 - 2)R, - E(z,z,) and [/~, - ~,] are both of order Op(l - 2, 1/01/2; thus we 
have 

It 

(1 - 2)-I/ZEg - ~]  = E(Z,Z;)-I(1 - 2) l/: ~ 2 ' - 'z ,a ,  
T = i  

--  O p [ ( l  - -  2)  ljz, 1/t]. (11)  
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The asymptotic normality and the related dispersion can be obtained by using 
calculations as in the Appendix 1; specifically, defining E[((z,)2)] = E[ztz~] we 
may get 

[((, , lim lim E 1 - -  ~.)1/2 ~ '  2*-'z,a, 
~]."* 1 f ~ o0 t-----I 

I - I  

= iim lim (1 - 2) ~ ~,2"E(ztz[)o '2  --- ~E(z,z,)oi , 2. 
A ~ I  t ~  t = O  

The last follows by noting that lima-.l(1 + 2) = (1 + 0.9) --- 2 since 03) = 3-0.~ 
and 0.3 = ~. 

Proposition 1 highlights the trade-offbetween tracking capability and estima- 
tion accuracy induced by the factor 2; in particular, as 2--, 0 the speed of 
adaptation ofpt increases but its MSE efficiency declines. Since as 2 ~ I the RLS 
algorithm converges in probability to the OLS estimator, a way for explaining 
the term ½ in the dispersion of (10a) is to assume that 2 varies more slowly than t, 
and its interval of definition does not contain the bound 1. Finally, the expres- 
sion (10b) may be used in sampling form, by replacing E(z,z~) by (I - 2)R,, 
provided that {yz:(k)} decays at a rate faster than ). < I (see Lemma 1). 

Proposition 2. Given the linear model (7), under the stationary assumption (9) the 
prediction errors and the recursive residuals (&O behave like 

L,N[O(1--2)I/2, a2+O(1--~)], E(af~-k)==)O(l--~.) as  t - - *oo .  

(12) 

Proof. By definition, we have the orthogonal decomposition 5t = z~ [P - / i f -  ~] 
+ at, from which it follows that E(~t) = O(1 - 2, 1/t)m/2; moreover, 

E(~2) = ~2 + E[z;(~,-1 - ~ ) - ]2  

= ~2 + E{~E[(i~,-t - P)(fl,- t - P)'l~]z,}, 

and by (lOb) we get 

, , 1 ( 1 - - ) ' x )  2 , 2 )3 /2 .  l ira  E ( ~  2)  = t~ 2 + E[ztE(ztzt)- zt] \ / ~  t; + E ( z t z f ) O ( 1  - 
I " *  OU 

Similarly, using the asymptotic expression of E [ ( ~  - [l)(~t-k -- ill)'] we have 

r f l  - ,~'x ~ ] 
I im E(,~,,~,_t<) --  [ I t ] - ~ - - ~ ] / .  - (1 - 2),t ~ - '  l "  E [~; E(z ,z~)-  ' ~ , - d  ~r 2 

I , - i  01~ 

+ Elz'tz,)O(l - -  ~ ) 3 / 2  
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which may be proved even for {~,}. In practice, as t--* ~ and A--+ 1, the 
re,~ursive terms {~,, fi,} become best linear unbiased spherical (BLUS) residuals 
(see Dufour, 1982). 

Under the condition of stationary (9) it may be checked that asymptotically 
unbiased estimators for the residual variance and the dispersion of #t are given 
by 

(13) 

Other estimators of a2 could be introduced, such as ~ (~,~,)/t or simply (~ t ) .  
However, 8~ in (13) is a suitable compromise, consistent with the algorithm (8) 
and proper for tracking {a~} if this does not have sudden changes. 

4. Ondine inference 

In this section we extend previous results to the recursive nonlinear least 
squares (RNLS) estimator of the TF-ARMA model and we provide distribu- 
tions for the on-line statistics of causality. The recursive version of (3) with 
weighted gradients {2N-t~t(k)} may be obtained by equating the number of 
iterations and the number of processed data (k = N) = t, and proceeding as in 
the derivation of (8) (see Grillenzoni, 1991 b). The resulting algorithm minimizes 
the weighted functional St(/~)= Y'.r,=l At-'a,2(~); leaving aside computational 
details for ~(t) and the 'regressors' [(t), its basic expression is given by 

EW-RNLS 
A A 

R ( t )  = ~ .  R ( t  - 1) + ~ ( t ) ~ ( t ) ' ,  (14a) 

a( t )  - -  y ,  - ~ ( t ) ' ~ ( t  - 1), (14h) 

~(t)  = ~ ( t  --  1) -I- R ( t ) - '  ~ ( t )~( t ) ,  (14(:) 

~(t) = y, - ~(t)'~(t), (14d) 

S ( t )  = 2 . S ( t  - 1) + a(t)~(t), (14e) 

where £(t)' = [tfi(t - 1) ... Pfi(t - r), x,_~ ... x,-~-b, ~(t - 1) ... ~(t - p), 
~(t - 1) ... a(t - q)]. The corresponding on-line estimators for the indexes (2) 
are given by 

r,. A 

~(t) = (1 - 2) [So(t) - So(t)], ~(t) = o~(t) 6 j ( t )  , (15) 
L i=O I j = O  i 
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and in the following we investigate their asymptotic distributions, or that of 
related test statistics. Exact expressions are difficult to achieve, even under the 
assumption (9). 

Proposition 3. Let  {xt, Yt} be ergodic processes and (1) their stable and identified 
representation; then the sequences {~(t),,~(t)} computed in (14) are such that 

S( t )= I~= l  ):- '~(T)a(z)]  P , W a + O p ( 1 - 2 )  as t ~ o o ,  (16a) 

where 

Wa ~ Lil + 2) "Z ~,~'Z-~_ ~/J (in law). (16b) 

Proof. For simplicity, let be a = 1. We first recall that under conditions of 
ergodicity and identification the recursive estimator (14c) with 2 = 1 is con- 
sistent for/~ (Ljung and S6derstr6m, 1983). Thus, by Slutsky theorem we have 
fi(t),~(t) = a, llJ) + Op(1 - )1, l/t) l/z and [ti(tJ~(t)] = u, + Op(l - ,~, 1/t), where 
ut ~ Xz(1). If 2 is close to unity, the variates z~(t) z = [~(t)t~(t)] are also asymp- 
totically independent. 

Now, for t sufficiently large we may write Sit) = ~/,= i ):- 'ur + Op(1 - 2) and 
we must find the limiting distribution of a linear combination of random 
variables u, ,,, xz(1). This analysis has some connection with the distribution of 
quadratic forms; however, this has been solved exactly only for particular cases 
of finite forms (see Solomon and Stephens, 1977; Mathai, 1983). Given the 
asymptotic structure of our problem it is convenient to utilize an approximate 
solution. A simple approach, particularly useful in the case of exponential 
weights, is that proposed by Patnaik (1949) which makes the first two moments 
of S(t) agree with those of a known random variable W. This technique is also 
discussed in detail by Johnson and Kotz (1970, p. 165). 

Thus, referring to W = cU, with c constant and U ~ ~Z(n), and equating 
mean and variance of S, W, we have 

' ± 
2 t - '  ~- cn, 2 (2'- ' )  z = 2c2n. 

t=l t=! 

Solving for c and n we get 

,£__,,,/,£__ c = 22 t -~  2 t - r  
1 

/ ! \ 2 /  t 

which belong to the distribution of S(t) L c" xZ(n). Now, the advantage of this 
approach lies in the fact that suitable asymptotic expressions of the unknown 
coefficients are available, in particular c --, 1/(1 + 2) and n - ,  (1 + 2)/(1 - 2) as 
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t --, ~ .  These prove (16b) and provide approximate mean and variance of S(t), 
namely 1/(1 - A) and 2/(1 -/`2). Finally, by the central limit theorem, we have 
S(t) ~ N(.)  as t ~ ~ and/`  --* 1; thus, the order of approximation in (16b} is 
0(1 --/`). 

Remark 1. For values of/`, t sufficiently large we may derive, as a corollary of 
the proposition, the approximate (in law) F-statistic corresponding to the 
A-index, 

[S.(t)-S,(t)]/m [ {1+2~ ] 
F, ( t )=  ~ - - _ ~ - ) ~  L F  m; \ l  _ A] -- (m + n) , (17a) 

where m = (r + s + 1), n = (p + q), and 2 ~ [(1 + A) - {m + n)(l - / ` ) ]  are suit- 
able 'degrees of freedom'. Similarly, for the F-statistic which is used for testing 
the hypothesis He: a~ = aa, we may have 

p2(,  (17b) 

The degrees of freedom of these distributions are consistent with the fact that, 
for decreasing values of A, the variability of the recursive estimates S(t), ~(t) tends 
to increase. This means that larger critical values are needed to deal with greater 
sampling errors; in practice f =  (1 +/`)/(1 - / ` )  must decrease. It is worth noting 
that the value o f f  is such t h a t / I  ~ 0, hence it represents the effective sample size 
of the estimates. With respect to the most common choices of the weighting 
factor, we have A = (0.98,0.97,0.96) = ~ f =  (99,66,49), which correspond to 
medium samples. 

Next result extends Proposition I and Corollary 1 to RNLS estimators. 

Proposition 4. Let {xt, yt} be eroodic processes and (!} their identified repre- 
sentation; then for the estimators ~(t) (14c) and ~(t) (15) we asymptotically have 

(l--/`)-l/2[~(t)--~l L'N[0,~E(~,~[)-10"2] as t-~¢X~, /`-~1, 
(18a) 

i.e., 

~g ' 1 - ~  , - 1  2 0 g  

08b) 

Proof. We recall that under conditions of ergodicity and identification the 
recursive estimator (14c) with/` - I is asymptotically equivalent to the iterative 
version (3). This means that its statistical properties are summarized by 
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Theorem 1, and as t ---, oo, ,t --* 1, the Slutsky theorem implies 

P t [i~(t) P ,/~] =~ [~(t) P ,~,(ill)] ~ [(1 - 2)R(t) ,,E(¢,~,)]. (19) 

The result (18a) can now be proved by focusing on the loss function 
3(0 = ~ t=  l 2,-,~,(t)a~(t) ' which corresponds to J r (P)= ½0Sdp)/8~ evaluated 
in ~(t). While Jr(P) --,0 in probability as t -~ oo, by the minimization properties 
of P(0 we must have J(O - 0 for every t < ~.  Hence, taking a Taylor expansion 
of J(t) a round/ l  and multiplying by (1 - 2) we get 

t t 

(1 --/t) ~ 2t- '~ ,a ,  - (1 -- 2} ~ 2'-'(¢,¢', + Z,a,)[i~(t} - p] 
t = l  , = 1  

= -- Op[(1 -- 2) z, 1 /0 ,  (20) 

where $t = - 8~t/Sitl' is the Hessian. Notice that {-'t} is a matrix process which 
is still ergodic under assumptions (A); moreover, as in (3b), it is only a function of 
the past events {x t-k, at- k }- Thus, having E($tat) = 0 for all t, from (19) we may 
get (1 - 2)~t,=1 2'-'(~,d.~', + .~,a,) = E(d~t~) + Op(l - 2, l/t) 1/2, and substitu- 
ting this in the expansion (20) provides us an expression similar to (11). Finally, 
proceeding as in the proof of Proposition l, we may obtain {18a). 

P 
The proof of (18b) follows by noting that ~(t)-----0(ll) as t --> oo, 2 --+ 1, 

and proceeding as in the proof of Corollary 1 with (k = N) = t. In. particular, 
the basic elements are the expansion [~(t)-0(11)] = (O0/Op)'[$(t)-  li] + 
Oo(1 - 2, 1/t) and (18a). 

Remark 2. Under the assumption of stationarity, an asymptotically unbiased 
estimator for the dispersion (18b) can be obtained from the on-line statistics R(t), 
s(t), 

, , , , :[ ' ] #(t)2R(t)- i , #(t) 2 = (1 - 2)S(t). (21) 

It is worth noting that if ~.(0 are the diagonal elements of ~'(t), then using 
Propositions 3 and 4 jointly, for 2 close to unity we have the approximate (in 
law) T-statistics 

A 

, ~ T k l _ 2 j  as t ~ .  (22) 

Also in this case, confidence intervals constructed with (22) are 'aware' of the 
trade-offbctween tracking capability and estimation accuracy involved by 2. In 
fact, when 2 decreases, T values increase for a given confidence level. Hence the 
probability of rejecting H l :/~, ~ 0 when this is false (i.e., when ~, ~ 0 for the 
action of ~t) is augmented. We may then conclude that under the assumption 
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/~t =/~, the inferential procedures with recursive statistics (14) have the same 
structure as those developed in the iterative case. Since the effect of 2 < 1 is 
similar to that induced by t <~ oo, previous asymptotic expressions may be used, 
with further approximation, for finite samples. Substantial problems are repre- 
sented by the computation of the degrees of freedom and by the possible serial 
correlation of recursive errors. A value of A e [0.95 ÷ 0.99] is a suitable choice in 
the case of slowly time=varying parameters. 

5. A numerical application 

In this section we illustrate the on-line inferential framework discussed pre- 
viously cn a real data-set published by Liitkepohl (1991, p. 505). It consists of 
monthly observations from two financial processes: Y = short-term interest 
rate, X = long-term interest rate, for West Germany in the period t = January 
1960 to December 1987 (N = 336). As is expected from the Keynesian economic 
theory, the relation of causality should be X, ~ Y,,just because the variable X is 
'controlled' by monetary authorities via prime rate and open market operations. 

Original data are displayed in Fig. 1, showing a clear situation of non- 
stationarity in covariance; stationarity in mean may be achieved with a first 
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difference { Yz, x, } = (1 - B) { Y,, X, }. The usefulness and the admissibility of this 
transformation is demonstrated in Appendix 2, which provides the analysis of 
the series in levels. 

Table 1 reports the sample correlation functions, auto (ACF) and cross 
(CCF), of the series { yf, xt} and the Ljung-Box statistics. Following the analysis 
of Box and Jenkins ( 1976, p. 349) the TF model (1 a) has orders (r, s, b) = (1, 0, 0) 
and (p,d,q) = (112, 1, 1), where the AR operator is of seasonal type: (1 - ~bBt2). 
Table 2 reports the parameter estimates and the statistics of causality; with 
~ =  - 1 8 %  and ~ = + 1.4 it confirms the relationship X , ~  Yf found in 
Appendix 2. 

Algorithm (14) was implemented with the coefficients 2 = 0.98 and R(0) 
= 1/0.18, which have yielded uniform and mild variability of recursive esti- 

mates-  that is, suitable trade-off between tracking and accuracy on the entire 
sampling interval. Moreaver, (14c) was initialized with ~(0) = ~N(k), the off-line 
estimates of Table 2. Fig. 2 shows the trajectories of the reeursive estimates 
of (OJo,61,01, ~2) ,  together with their critical values implied by (22). These 
are given by T~12(f)" ~ ,  where the confidence level was chosen as 
(1 - 0t) = 95% and f =  99 are the degrees of freedom. 

Despite the moderate values assigned to the tracking coefficients and the 
transformation of the original series, these graphs show the strongly nonstation- 
ary nature of the underlying economic processes. The greatest change is in the 
noise component nt = ~7  t(B)Ot(B)at, where the seasonal AR filter is gradually 
replaced by the MA one. This may be interpreted as the tendency for short-term 
variables, like speculative capital movements, to prevail in financial markets. 
Finally, while the estimates of the transfer oJo are uniformly greater than their 
critical values, those of the dynamics 6t are locally nonsignificant. 

Fig. 3 shows the standardized prediction errors ~(t)= [~(t)~(t)] 1/2 together 
with their 95°/~ confidence intervals 4- 2-#(t) implied by Proposition 2. Apart 
from few outliers, their behaviour is more stable than the series { y,} in Fig. 1. 
Fig. 3 also provides the CUSUMQ statistics ~ t=  1 1~(,.¢)2/)-'~N=1 i~(t)2 together 
their 1% critical values. This last confirms, in terms of a powerful test, the 
pattern of variability of the parameters in Fig. 2. 

Fig. 4 now displays the on-line F-statistics (17a) together with their asymp- 
totic 1% critical value. The nonsignificance of the causality index ~(t) at the 
beginning of the sample is partly due to the choice of initial values ~2(0) and 

Table 2 
Parameter estimates (with T-ratios) and statistics of causality 

Model ~o 61 01 ~lz RSS Statistic 

TF 0.809 (7.8~ 0.424 (4.3) 0.279 (5.1) 0.364 (5.9) 60.4 g = 1.4 (5.1) 
ARMA . . . . .  0.345 (6.21 0.399 (6.6) ?3.3 F = 35.1 (Ft,/, = 4.7) 
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#~(0). These were estimated as ~(0)" = 3 0 - t ~ o  ~(t)2,  and turned out approx- 
imately equal. 

Finally, Fig. 5 reports the recursive estimates of the gain together with their 
5% critical values, derived from (18b). The hypothesis to test is Ho: gt = 0 for 
1 ~ t ~ 336, and as anticipated by Fig. 2, the estimates ~(t) are locally non- 
significant. This confirms the asymmetry of the caus~iity parameters A, g; in 
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practice, to a very significant prediction effect there does not correspond an 
equivalent multiplicative impact. 

A fundamental aspect in the above exercise is represented by the computation 
of suitable standard errors and degrees of freedom, in particular, the factor 
1/(1 +/l) in the dispersion (21) has a crucial importance in tuning critical values. 
Without it, all recursive estimates would be nonsignificant, in contrast with the 
indications of the off-line analysis. In general, mean values of the statistics in 
Figs. 2-5 agree with the off-line estimates in Table 2, and this confirms the 
validity of our on-line inferential framework. This framework might also be used 
for testing the constancy over time of the regression coefficients by comparing 
the confidence intervals ~i(t) + T ~ / 2 ( f ) ~  at any pair of time instants. With 
respect to traditional tests of stability, the advantage of this approach is that it 
directly monitors the paths of the parameter estimates. 

Critical aspects in the proposed methodology are represented by the finite- 
sample properties of estimates and power of the test of significance. Long 
simulation experiments are recommended to investigate these aspects, even 
though an intrinsic difficulty is the nonparametric nature of the EW-RLS 
algorithm and related statistics. We conci~ide the article with a small Monte 
Carlo experiment that aims to point out the validity of the recursive approach 
with respect to conventional methods of analysis. 

An ARX(1, 1) model with sinusoidal parameter functions was considered, 

Yt = d~(t) y , _  1 + oJ( t )x t  + at ,  x t  " IN(0, 22), at ~ IN(0, 1), (23a) 

~(t) = 0.93 sin(0.093t), to(t) = 1.56sin(0.156t), (23b) 

t =  1 , 2 ,  ... ,200, 

and 30 replications were fitted with the algorithm (8). Adopting the initial 
condition (~o = ~bo)= 0, suitable tracking coefficients were found to be 
R e  = 10-12 and :. = 0.7. Fig. 6 shows the mean values of the recursive estimates 
(e.g., ¢, - t 3o ~ = 30 ~i=,  ~it), together with the mean values of their 5% significance 
bands. It may be noted that EW-RLS has a good tracking capability and 
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a significant causal relationship x, =~ y, is detected. O n  the contrary,  conven-  
tional O L S  estimates by providing ~N = - 0 . 1 1 3  (0.072), t~n = 0.024 (0.131), 
mean s tandard  errors  are in parentheses, accept  the independence o f  { Yt, xt}. 

Appendix 1 

Proof  o f  Lemma 1 

It is easy to show the asymptot ic  unbiasedness l i m t ~  E[~t(0)] = ~%(0), 
thus to prove the result we must  show that  the variance E [ ~ t ( 0 ) -  ~%(0)]-" 
= O(1 - A) when t --* ~ .  By the proper ty  of  Gaussian variates it is known that  

E(x 4) = 3" E(xZ), hence for the mean square we have 

! t 

E [ ~ ( O ) ]  = (1 - 2) z ~ ~ 2 2 ' - ' - ~ E [ x , y ,  xiy~] 
i = l  j = l  

t t 

= (l - ~)~ ~ ~ F ' - ' - q  ~,~Ao) + ~,~(i - j )  ~,.(i - j )  
i = 1  j = !  

= C ) + C t  z + C ?  (say). 



374 C Grillenzoni / Journal o f  Econometrics 73 (1996) 355-376 

Clearly, l i m , ~  C, t = y~y(O) and by assumption I?~(i-j)?y,(i-j)[ < ~.pl~-J, 
with u constant. Hence, 

t 

[c,:[ ~ :(1 - ;+): Y, E ~:'-~-+."-+' 
i = 1  j = l  

t - I  t - I  

= ~(I - ~)2 y~ E ~/+~'~-J' 
i = 0  j = O  

I - 1  s - l t - I  

j=O i= I j=O 

Now, the limit becomes limt-.o~ IC~l ~ [g(l - ~)/(1 + 2) + u(l - ~.)20(1)] --- 
O(1 - A), and the same holds for C~ (for details see Stoica and Nehorai, 1988). 
The result then follows by recalling that any real random sequence {z,} is as big 
as its standard deviation: z, = Op(~r,). 

Appendix 2 

Analysis of the series in level 

Following Liitkepohl (1991, p. 378), the analysis of the Granger causality 
between integrated and cointegrated processes may be developed as in the 
stationary case. This is mainly due to the superconsistency property of the LS 
estimator when is applied to vector ARMA systems with unstable roots. Hence, 
fitting bivadate AR(p) models to the series { Yz, Xtb and selecting the order by 
minimizing the consistent criterion BICx(p) = loglZNI + p41og(N -- p)/(N - p) 
(where _r is the residual eovariance matrix), we have obtained 

( Yz'~__i 

X, / 

0.023 \ 
(o.i) | 
0.235| 
(3.2) ] 

1.19 
(20.1) 

+ 
-- 0.006 

(0.3) 

0.602 
(4.3) 
1.46 

(26.5) 

( Yt-I"~ 

X,- i  J 

- 0.231 
(4.1) 

+ 0.023 
(0.9) 

- 0.571 ) 
(4.2) ( Y,-2~ 

- 0.504 \X , -2  ] 
(9.3) 

+ \ ~ , ) '  

~s (0.236 0.037'~ 

= \0.037 0.035,/' 
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where T-statistics are in parentheses. According to the characterization of the 
Granger causality in vector AR models (see Granger and Newbold, 1986), the 
above result establishes with sufficient statistical evidence the one-sided rela- 
tionship X, =~ Yr. 

Grillenzoni (1991a) has criticized the vector ARMA framework in modeling 
multiple time series, because it does not enable a precise identification of the 
dynamics of the individual processes. An alternative approach, that agrees with 
the econometric tradition, is provided by a system of simultaneous TFs or 
ARMAX models. Following a disaggregate identification strategy we have 
checked that the series Y~ has a more complex representation: 

1 - 1.364B + 0.415B2~ (1 - 0.418B'Z~ y,  
(24.5) (7.5) ] (8.0) ] 

/'0.492B - 0.878B z + 0.969B 3 - 0.559/~'~ 
X, + ti,, / | 

\(3.4) (3.5) (3.9) (4.1) ] 
~2 aa = 0.197, 

whereas X, was confirmed to be an exogenous AR(2) process. These results 
provide further evidence of the Keynes' theory of interest rates. The problem of 
the instantaneous causality between Y,, X,, raised by the correlation of residuals 
corr(a~, #~) = 0.41, may be solved by assigning it to the (most) significant of the 
one-sided relationships, i.e., to Xt =~ Yr. 

In order to achieve a more parsimonious representation for Y,, a differencing 
of both series may be useful. In presence of cointegration, however, this trans- 
formation distorts certain features of the relationship between the variables and 
may raise noninvertibility in the subsequent ARMA representation. Tests for 
cointegration require a preliminary analysis of the degree of integration of the 
series. Now, performing some augmented Dickey-Fuller tests we have rejected 
at 99% the presence of a unit root in Y,, whereas the same hypothesis was 
accepted at 99% for X,. Specifically the test equation for Y, was 

Yt ffi 0.290 + 0.952Yt_ t + 0.359yt_ t + 0.169yt-4 + 0.361yf_ 12 + ut, 
(4.4) (95.1) (7.4) (3.4) (7.3) 

where yf = (Y, - Y,_ ~), and the test statistic TDv = (0.952 -- 1)/0.01 = -- 4.8 is 
lower than the 1% critical value - 3.45. Since Y, and X, have not the same 
degree of integration, they are not cointegrated (by definition); differencing is 
then an admissible transformation. 
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