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Abstract. Sharpening filters increase the depth of digital images by adding a

fraction of their gradient. This portion is tuned by a coefficient which is usually

selected according to rules of thumb or subjective evaluation. This paper proposes

statistical measures for designing such parameter in a nearly automatic way, avoiding

subjective evaluations. The proposed measures are based on the distance between

sharpened and equalized images, which serve as an early reference, and test statistics

of uniformity of the luminance histogram. More complex measures, based on the

trade-off between skewness and kurtosis, and variance and autocovariance of the

sharpened image, are also studied. Numerical applications to various kinds of digital

images show that the proposed measures provide similar and acceptable solutions.
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1. Introduction

Sharpening techniques improve the clearness of digital images by enhancing the

marks of the objects which are present in the scene. This improves their borders

and their details, giving to the images greater neatness and depth. In general, the

strategy of sharpening is to add to the original array a portion of its gradient (e.g.

Gonzales and Woods, 2002). This fraction is usually tuned by a coefficient α, which

must be properly designed. If the coefficient is not selected adequately, then grain

effect and noise are produced also in flat regions, where edges are absent.

Enhancing of images is also pursued by equalization and denosing methods.

Image equalization increases the contrast by flattening the histogram of the pixel

luminance, so that all grey levels are represented. There has been recent develop-

ments for color images based on curvelet and retinex techniques, e.g. Starck et al.

(2003) and Funt et al. (2004). Image denosing increases the uniformity of flat areas

by smoothing on neighboring pixels. Nonparametric statistics has provided effec-

tive solutions to the problem of edge-preserving smoothers, e.g. Davies and Kovac

(2001), Rue et al. (2002), Polzehl et al. (2003) and Hillebrand and Müller (2006).

However, sharpening differs from these methods because enhances the contrast in

the same way as the optical focusing, i.e. by increasing the image depth.

In general, the coefficient α is selected according to rules of thumb or subjective

evaluation of the grain side-effect. However, sharpening needs rigorous measures of

image quality, as those developed by Avcibas et al. (2002) and Bovik et al. (2002,

2005). These measures are mostly employed in image compression and restoration to

evaluate the goodness of a transformation with respect to the original image. They

are also used for comparing denosing methods by blurring the original picture with

artificial noises, and then applying the candidate smoothers. A similar approach

was also followed by Allebach et al. (2005), to design sharpening filters for scanned

images, but the reference (ideal) arrays were high-resolution digital photographs. In

any event, there is the need for standalone solutions for α, which work fast on the

original array and without blurring it artificially. In this context, quality measures

can be applied only once a suitable reference image is defined.

1



In this paper we develop a data-based method to tune the coefficient α with-

out subjective evaluation. The basic strategy consists of using the equalized image

as an early reference for the sharpening. This is sensible because equalization in-

creases the contrast without changing the structure of the array, namely the spatial

relationships between the pixels. Classical measures of mean absolute and squared

distances between sharpened and equalized images can be minimized with respect

to α. Moreover, also test statistics based on the histograms, such as Kolmogorov-

Smirnov and Pearson-Fisher, can be used. All of these measures are equivalent from

a theoretical standpoint, and their empirical results agree.

The main advantage of the proposed solution is the possibility to sharpen images

in a fast and automatic way. This can particularly be useful in processing image

sequences, as in video recording and transmission. To simplify and robustize the

method, the various measures for selecting α can be reduced to the same scale

and summarized into a single objective function. Finally, the resulting sharpened

images can be further improved through equalization, demonstrating that the two

enhancing methods can be fully integrated.

Another important determinant of sharpening is the quality of the gradient

image to be added. Classical edge detectors, as those discussed in Bovik et al.

(1986) and Lim et al. (2002), are unsuitable because they only consider positive and

significant components of the gradient. Instead, sharpening also needs negative and

low signal-to-noise ratio edges. Such components can be obtained even as residuals

of spatial auto-regressive (SAR) models (see Tjøstheim, 1983), and in Grillenzoni

(2004) adaptive estimators for their parameters are developed.

The quality of sharpening can be significantly improved by adapting the edges

to local conditions of contrast. Existing works tend to classify the pixels and to

establish specific rules for reducing sharpening in flat areas and only enhancing the

others, e.g. Polesel et al. (2000), Russo (2005) and Kotera et al. (2005). In the

final part of this paper, adaptive weights are automatically computed on measures

of local relative contrast. Finally, quantitative comparisons of the various solutions

are carried out through the ratios of variances of sub-images.
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2. Parameter Tuning

2.1 Image Transformations

A digital image consists of a matrix of pixels X = {Xij} of size ni × nj ; in the

black and white case, the pixel luminance X is single valued and is usually coded

in the set of integers [0, 255]. Typical operations of image processing can be viewed

as matrix transformations Y = g(X). In particular, image compression, denoising

and restoration aim to represent the original image in a parsimonious way and to

improve its quality. Avcibas et al. (2002) and Bovik et al. (2002, 2005) have defined

several measures for evaluating the quality of a transformation. The most general

one combines means X̄, Ȳ , variances σ2
X , σ2

Y and the covariance σXY as

QXY =
(4 σXY X̄ Ȳ )

(σ2
X + σ2

Y ) (X̄2 + Ȳ 2)
∈ (−1, +1)

Dc
XY =

1

ni nj

ni
∑

i=1

nj
∑

j=1

∣

∣

∣Xij − Yij

∣

∣

∣

c
, c = 1, 2 (1)

the quality of Y is good if Q is near 1, and/or the mean distance D is near 0.

These measures also enable to compare the performance of competitive trans-

formations; for example, in the denoising context one has Campbell et al. (1990),

Davies and Kovac (2001) and Hillebrand et al. (2006). In this case, comparisons can

be obtained by blurring the original image with an artificial noise (Xij + vij), next

computing the denoised image Yij and then evaluating the indexes (1). The best

method is the one which maximizes QXY or minimizes DXY . Simpler operations,

such as optical focusing in digital cameras, only need univariate measures of the

recorded image X , such as the variance or fourth order moments (e.g. Zhang et al.,

1999). The best focal regulation ℓ is that which maximizes the contrast σ2
X(ℓ).

Image sharpening consists of adding to the original image a portion of its edge

E = {Eij}. It can be represented as the set of linear transformations

Yij = Xij + α Eij (2)

Eij = (Xij − Mij)

where Mij is the smoothed image and α > 0 is a tuning constant. Typically, M is

computed with local means; using a 3 × 3 window, the equation (2) becomes
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Yij = (1 + α) Xij −
α

9

1
∑

h=−1

1
∑

k=−1

Xi−h,j−k (3)

If the mean avoids the 4 corner terms Xi±1,j±1, and only considers the more ad-

jacent pixels, then the edge coincides with the Laplacian gradient; namely, in the

continuous space E(i, j) = ∂2X(i, j)/∂i ∂j.

To develop the discussion in an effective way, we begin a running example on

the testing image ”Lena”. It is a GIF of size ni =nj =512 and range 0-255. Figure

1(a-c) displays sharpened versions obtained with α = 0, 3, 6 and a 3×3 averaging

window. Apart from the choice of the smoother, the quality of the transformation

crucially depends on α. If its value is too high, then ”grain effect” is introduced

even in flat regions where the gradient is negligible. In general, rules of thumb and

subjective evaluation are used for selecting α.

Figure 1. Sharpening of Lena obtained with a 3×3 window and α = 0, 3, 6.

(a) − Original                                       (b) − 
Sharp α=3                               (c) − Sharp α=6

2.2 Some Problems

The attempt to select α by means of the strategies commonly used in image

processing does not work. As discussed above, best transformations should opti-

mize the quality measures in (1). However, letting Y (α) the sharpened image, one

has that QXY (α) is monotonically decreasing in α and Dc
XY (α) are monotonically

increasing; see Figure 2(a). Monotonicity is also present in the variance σ2
Y (α) which

is used as objective function in auto-focusing. Following the evaluation approach of

image denoising, one could replace the original image with the blurred ones
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X∗
ij =







Xij + vij , vij ∼ Gauss, Uniform, Salt Pepper

X̄ij = (Xij + Xi−1j + Xi+1j + Xij−1 + Xij+1)/5

(obtained by adding white noises or smoothing it by local means), and then com-

puting the sharpened image Y ∗(α). Unfortunately, also in this case the distances

Dc
XY ∗(α) are monotonically increasing as in Figure 2(a).

To find a measure which is strictly convex or concave in α, one must consider

local variances of Xij. Thus, let X(1), X(2) be sub-images corresponding to high

and low contrast regions. The aim of the sharpening is to increase the variability in

the first sub-image with respect to the other. It follows that the ratio

R12(α) = var
[

Y
(1)
ij (α)

]

/var
[

Y
(2)
hk (α)

]

(4)

should have a well definite maximum with respect to α. The performance of this

measure crucially depends on the choice of the sub-images, which is not an easy

task a-priori. Usually, X(1) is placed at the center of the scene, whereas the second

one is at the borders; however, in aerial and satellite images the identification of low

and high contrast regions may not be possible.

Figure 2 exhibits the path of the statistics (1) and (4) computed on the sharp-

ened version of the Lena image. The sole statistics which has not a monotonic path

is (4); it was computed on non-overlapping sub-images of size n = 100 placed at the

center and at the upper left corner of Figure 1(a). However, the ”optimal” value of

the parameter is α = 8, which is clearly overestimated and unuseful.

Figure 2. Path of statistics (1) and (4) for sharpened versions of the Lena

image. (a) QXY (solid), D2(dashed); (b) R12(solid), σ2
Y (dashed); α = 1, 2 . . . 20.
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2.3 Some Solutions

In order to define a measure which is strictly convex on the whole image, one

must relate Y (α) to an ideal array which is different from the original one. The

equalized image ZX = {Zij} is the natural candidate because its target is similar

to sharpening, but increase the contrast of X by enhancing each grey levels by the

same amount. In practice, the probability distribution f(Z) must be Uniform, and

this is obtained by standard probability transformations as

Zij =
⌊

FX(Xij) 255
⌋

; FX(k) =
k
∑

h=1

Nh

ni nj
, k = 1, 2 . . . 256

where Nk is the frequency of the k-th grey level of the original image, and FX(·) is

the cumulated empirical distribution (see Appendix).

Figure 3 shows the equalized version of the Lena image and its histogram. Figure

3(c) provides the plot of the kernel densities of the sharpened images with increasing

values of α

fY (yk|α) =
1

ni nj κ

ni
∑

i=1

nj
∑

j=1

K

(

Yij(α) − yk

κ

)

, yk = 0, 1, . . . 255

The above is a sort of smoothed histogram, where K(·) is a density function and

κ > 0 is a smoothing parameter. Under mild conditions, its value can heuristically

be designed as κ = σY /(ni nj)
1/5 (see Härdle, 1991).

Figure 3. Comparison of equalization and sharpening: (a) Equalized image Z;

(b) Its frequency histogram; (c) Kernel densities fY (yk) of sharpened images with α

= 0 (bold dot), 3 (solid), 6 (dashed), 9 (dot dashed).
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Because equalization and sharpening have a similar target, but pursue it in in-

dependent ways, the distance measure Dc
ZY (α) should have a well definite minimum

in α. Therefore, a reasonable selection strategy becomes:

αopt = arg min
α

Dc

(

ZX , Y (α)
)

, c = 1, 2 (5)

Analogously, one can minimize test statistics which directly compare the distribution

function of Yij(α) with the Uniform one, such as those of Kolmogorov-Smirnov (KS)

and Pearson-Fisher (PF) (e.g. see Dudewicz and Mishra, 1988)

S1(α) =
√

ni nj sup
k

∣

∣

∣FY (α)(k) − k/256
∣

∣

∣ (6)

S2(α) =
256
∑

k=1

(

Nk(α)

ni nj
− 1

256

)2

256

where Nk(α) is the absolute frequency of the k-th grey level of the sharpened image.

The second statistics (PF) is more robust and convex with respect to the KS one

because it uses the sum operator and the squared value.

Another measure which has a convex pattern with respect to α is the skewness-

kurtosis (SK) statistic defined by Bera and Jarque (1982) for testing Gaussianity in

time series. Adapting it to spatial series, it becomes

S3(α) =
ni nj

6

[(

µ3(α)

σ3
Y

)2

+
1

4

(

µ4(α)

σ4
Y

− 3

)2 ]

(7)

where µc(α) = E
[

Yij(α)− µY

]c
are central moments of order c > 0. To understand

the meaning of such statistic, consider Figure 3(c): it shows that as α increases,

symmetry and unimodality of the probability density improve, but its flatness and

dispersion worsen. This means that the indexes of skewness (µ3/σ
3) and kurtosis

(µ4/σ
4) have an opposite behavior with respect to α. The statistic (7) then realizes

a compromise between the two opposite tendencies and, therefore, can have a well

definite minimum.

Notice that in data analysis, the above statistics are used for testing hypotheses

of Uniform and Normal densities. Under these assumptions and the independence

condition, it can be shown that their distribution is of χ2 type. However, in our

context they mostly serve as objective functions for selecting α.
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Figure 4. Path of statistics (5)-(7) for sharpened versions of the Lena image:

(a) D2(solid), D1(dashed); (b) S3(solid), S1(dashed); where α = 0, 0.5, 1 . . .5.
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Figure 4 provides the path of the statistics (5)-(7) applied to sharpened version

of the Lena image. Their values was rescaled for the sake of representation. Panel

(a) provides the mean distances Dc
ZY and the panel (b) exhibits the KS and SK

measures. Unlike the Kolmogorov-Smirnov statistic, there are well definite convex

paths, and the optimal value of α is placed in the set (2.5, 3.5). The important

feature is that this interval is narrow and constituted by mild and acceptable values.

Further, it is stable on resizing, rescaling and partitioning the original image, such

as working on the central part of it, as X(1).

2.4 Strong Evidence

In this sub-section we massively test the previous solutions for α, by sharpening

digital images of various nature, such as satellite, aerial, microscope, X-rays, mag-

netic resonance, etc.. Many of the images were downloaded from the Internet site

of the book by Gonzales and Woods (2002). Low resolution images and numerical

values of the rescaled statistics are displayed in Figure 5.

In general, the displayed measures have a convex pattern, although they are

not alway smooth (i.e. differentiable); moreover, they provide values in the narrow

interval (1,3). To obtain a single value, one can consider the global objective function

given by the sum of the standardized statistics: Jm(α) =
∑m

k=1

(

Sk(α) − µ̂k

)

/σ̂k,

where means and variances are computed over the values of S(αh).
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Figure 5. Path of the statistics (5)-(7) for sharpened versions of various im-

ages. (a) Aerial of WTC-911; (b) City from LandSat; (c) Hurricane from NOAA;

(d) Finger print; (e) Hant head; (f) Electronic microscope; (g) Virus cells; (h) Ra-

diography; (i) Magnetic resonance (MRI); (j) Peppers; (k) Mandrill; (l) Barbara.

Statistics in the headings are listed in the following order: Solid, Dashed, Dash-Dot.
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(g) −  Cells
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By definition, the proposed method works well on images which have a rich

texture (i.e. a high variability). In the presence of extended flat regions (such as in

X-ray, MRI and Microscope images), the statistics must be computed on suitable

areas. By default, one can choose the central part of the image having a size at least

1/3 of the original array. The most stable and convex measures are D1 (the mean

absolute distance) and S2 (the Pearson-Fisher statistic); they must be preferred in
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real-life applications. The basic philosophy of the outlined strategy is to consider

equalization as an early reference for sharpening. However, one can also integrate

the two techniques by equalizing the final sharpened image.

2.4 A Special Solution

Previous statistics work well, but do not consider the spatial dependence be-

tween pixels. Indicators of dependence are given by the spatial auto-covariances

(ACV): γX(h, k) = E(XijXi−h,j−k) − µ2
X , which measure the relationship of cells

which are separated by h-rows and k-columns. Now, because the sharpening reduces

smoothness, it also reduces the auto-correlation (ACR): ρY (h, k) = γY (h, k)/σ2
Y .

This is shown in Figure 6(b), as regards the Lena image and the lags k = h; indeed,

as α increases, ρY (k = h) decreases for all k.

On the other hand, it is known that sharpening increase the variance σ2
Y =

γY (0, 0); therefore, a statistic which sums Var and ACV should have a maximum

point in α. Using unbiased estimates and a common lag h = k, one can define

S4(α|m) =
m
∑

k=(0,1)

[

γ̂Y (k) =
1

(ni − k)(nj − k)

ni
∑

i=k+1

nj
∑

j=k+1

(Yij − Ȳ )(Yi−k,j−k − Ȳ−k)

]

(8)

where m is the maximum lag, and Ȳ−k is computed on i, j = (k + 1) . . . ni, nj.

Figure 6. Spatial dependence of Yij, Yi−k,j−k in sharpened versions of the Lena

images with 0.05 ≤ α ≤ 7.5 : (a) Autocovariances γ̂Y (k, k); (b) Autocorrelations

ρ̂Y (k, k); with k = 0, 1, 2, 4, 6 . . .40 (even for k > 1).
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In order to render strictly concave the statistic S4, it may be necessary to start

the first sum in (8) with k =1 because the filter (3) includes the term Xi−1,j−1. In

fact, this inclusion renders the first autocovariance γY (1) increasing in α, that is a

substitute for the variance γY (0), see Figure 6(a). Moreover, because the autoco-

variance values depend on the texture of the image, the lag k could be defined only

by row (with Yi−k,j) or by column (with Yi,j−k). Figures 7(a,b) show the behavior of

the statistic (8) with these specifications. They provides indications which are con-

sistent with the previous measures in Figure 4; moreover, they have the advantage

of taking into account the stochastic dependence between pixels.

Figure 7. Pattern of the statistic (8) with m = 20 in sharpened versions of

Lena image: (a) S4 as a function of γ̂Y (0, k); (a) S4 as a function of γ̂Y (h, 0).
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The general feature of the statistics S3-(7) and S4-(8) is to establish a trade-

off between two incompatible cost (gain) function, so that the resulting objective

function should have a well definite minimum (maximum) point. Although the

nature of these solutions is heuristic, the remarkable fact is that they indicate values

for α which are close to those of the measures based on the equalized image. The

main weakness of S3 is the possible lack of convexity (see Figure 5(f)), and the

problems of S4 are the computational complexity and non-automaticity.
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3. Adaptive Sharpening

3.1 Edge Estimation

The quality of the sharpening also depends on the estimation of the edge Eij.

This issue must not be confused with the problem of edge detection, which concerns

with positive and significant components. The array E in (2) is more complex, and

also includes elements with negative sign or with low signal-to-noise ratio. To be

specific, consider the detector discussed in Bovik et al. (1986) and Lim et al. (2002);

it is based on the mean difference of symmetric partitions of regular windows, as











XL
11 XL

12 XR
13

XL
21 · XR

23

XL
31 XR

32 XR
33











,











XA
11 XA

12 XA
13

XB
21 · XA

23

XB
31 XB

32 XB
33











Uij = max
(

∣

∣

∣X̄L
ij − X̄R

ij

∣

∣

∣ ,
∣

∣

∣X̄A
ij − X̄B

ij

∣

∣

∣

)

(9)

where X̄L
ij = (Xi−1j−1 + Xi−1j + Xij−1Xi+1j−1)/4 and so on. The estimator (9)

becomes an edge detector by testing the significance of each Uij with classical T -

statistics (e.g. Dudewicz and Mishra, 1988).

On the basis of (9), it follows that a simpler detector can just be obtained by

subtracting to each pixel the smallest one of its neighboring values. More generally,

one can define positive and negative edges as follows

E+
ij = Xij − min(Xi±1,j±1)

E−
ij = Xij − max(Xi±1,j±1)

E∗
ij = E+

ij + E−
ij (10)

the latter defines an edge estimator which is suitable for sharpening. In particular,

it is more sensitive than that used in the previous section because, on the Lena

image, it has a variance σ2
E which is 10 times greater than that in (3).

Figure 8 compares the estimators (9)-(10) on the Lena image, and evaluates

their effect on the sharpening with α = 2. It confirms that edge detection and edge

estimation for sharpening are different issues; in particular, the first only concerns

with positive components and selects the most significant ones.
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Figure 8. Edge estimation and sharpening: (a,b) Solution (9); (c,d) Solution (10).

(a)                                           (b)          
                            (c)                             
            (d)

3.2 Spatial regression

A full statistical approach to edge estimation is based on spatial auto-regressive

(SAR) models. These schemes exploit the dependence between pixels and estimate

the edges in terms of residuals of regression. The first-order model is given by

Xij = φ1 Xi,j−1 + φ2 Xi−1,j + φ3 Xi−1,j−1 + . . . + φ8 Xi+1j+1 + Eij (11)

where {φl}8
1 are coefficients to be estimated. With respect to the filter (3), where

φl=1/9 for all l, the adaptivity of the system (11) is apparent.

Under conditions of stationarity one has γ(h, k) = γ(−h,−k), and the right

hand side of (11) can be reduced to the first 3 terms only. This constraint is named

causal and enables the parametric identifiability of the model (11) (see Tjøsteim,

1983); in practice, it allows the parameter estimates to be consistent. Thus, letting

φ = [ φ1, φ2, φ3 ]′ and xij = [ Xi,j−1, Xi−1,j, Xi−1,j−1 ]′, the causal model can be

written as Xij = φ′ xij + Eij , and the least-squares (LS) estimator becomes

φ̂LS = arg min
φ

ni
∑

i=2

nj
∑

j=2

E2
ij(φ) =

(

ni
∑

i=2

nj
∑

j=2

xijx
′
ij

)−1 ni
∑

i=2

nj
∑

j=2

xijXij (12)

Application of (12) to the Lena image provided φ̂LS = [ .57, .84, −.42 ]′; with this,

one can generate the residuals Êij = Xij − φ̂
′

LS xij, which provide the edges for the

sharpening. The coefficient α can be designed with the same strategies as Section 2,

namely with the statistics (5)-(8). Numerical results are similar to those in Figure

4 and 7, and indicate α=3. The resulting sharpened image is similar to Figure 8(d),

and improves that of the filter (3).
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The adaptive capabilities of SAR models can be improved by applying local

estimation techniques. These methods enable to obtain parameter estimates φ̂ij

which adapt to local conditions of contrast and texture of the image. Following

Grillenzoni (2004), a simple algorithm can be obtained from (12) by weighting the

regressors with exponentially decaying weights

φ̂ij =

( nj
∑

h=2

nj
∑

k=2

λ
|i−h|
1 λ

|j−k|
2 xhk x′

hk

)−1 ni
∑

h=2

ni
∑

k=2

λ
|i−h|
1 λ

|j−k|
2 xhk Xhk (13)

where 0 < λ1, λ2 ≤ 1 are coefficients of spatial adaptivity.

Constraining λ1 = λ2, the resulting coefficient can be designed with bivariate

forms of the statistics (5)-(8). With respect to the Lena image, S2(α, λ) attains a

minimum at the point (3,.7). Anyway, given α, the quality of sharpened images is

relatively insensitive to the choice of λ, and seems worst than that in Figure 8(d).

Figure 9 displays the estimates φ̂ij(λ) obtained with a mild value of λ.

Figure 9. Local estimates (13) of SAR parameters obtained with λ1,2 = 0.9.

(a) −  φ
1
                                           (b) −  φ

2
                                      (c) −  φ

3

3.3 Adaptive edges

The filters we have discussed so far: (2), (10), (13) have the undesirable side-

effect of enhancing all noise components, also in flat regions where the gradient is

negligible. To improve the image significantly, it is necessary to intervene on the

mechanism of sharpening itself, by selecting the edges (residuals) to be added. A

sensible approach is the opposite one of robust statistical methods, and consists of

rejecting small residuals and accepting the largest ones. In this way, uniform regions

would be preserved from noise and only contrasted regions would be enhanced, see
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Polesel et al. (2000), Russo (2005) and Kotera et al. 2005).

In general, it is also possible to improve the smoothness of flat areas by replacing

the original pixels with the smoothed ones X̂ij = φ̂
′

LSxij . Thus, using the indicator

function I(·), the integrated sharpening-smoothing filter becomes

Yij = Xij + α I
(

|Êij| > δ σ̂E

)

Êij − I
(

|Êij| ≤ δ σ̂E

)

Êij (14)

which follows by Êij = (Xij − X̂ij). Under Gaussianity the threshold coefficient

should be δ = 2, 3; however, the density of Eij usually has heavy tails and it must

be larger. In general, it is difficult to tune δ automatically and the filter (14) tends

to smooth low-medium edges and to produce sparse outliers.

To avoid these drawbacks, it is necessary to adapt the edges to the local con-

ditions of relative variability in the original image. An automatic solution, with

spatially varying α-weights is given by

Y ∗
ij = Xij + α̂ij Eij , α̂ij = α

[

σ̂ij

max(σ̂ij)

]

(15)

σ̂2
ij =

1

(2d + 1)2

d
∑

h=−d

d
∑

k=−d

(Xi−h,j−k − X̄ij)
2

where σ̂2
ij and X̄ij are local estimates obtained with a (2d+1) square window, with

d ≥ 1. The rationale of (15) is to tune the edges proportionally to the local contrast;

specifically, because αij ≤ α, flat regions are preserved from noise and outliers, while

contrasted regions have weights near α.

The parameter α of (15) can be selected as in Section 2; however, from a visual

standpoint the filter has shown less sensitivity to such coefficient with respect to

previous methods. Figure 10(a) plots the weights α̂ij with d=3, placed in increasing

order, and Figure 10(b) shows the path of the statistics (5)-(7). To improve the

sensitivity of (15) to low-medium contrast, the profile of {αij} can be made less

sharp by using αγ
ij , 0 < γ < 1. Finally, Figure 10(c) provides the sharpened image

obtained with the edge estimator (10) and the coefficients α = 5, γ = 0.5. Without

doubts, its quality is significantly better than those in Figures 1(b) and 8(d).
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Figure 10. Elements of the filter (15): (a) Weights α̂ij and α̂
1/2
ij (dashed); (b)

Statistics (5)-(7); (c) Sharpened image with edge (10) and α = 5.
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3.4 Comparisons

In the previous sections we have discussed several methods of edge estimation

and image sharpening, e.g. (3) is based on mean values, (9) uses a mean-difference

edge-detector, (10) sums positive and negative edges, (11) considers residuals of

regression, (15) follows an adaptive weights strategy. Apart from subjective prefer-

ences, the question is: How to evaluate their performance objectively ?

Un answer comes from the relative variance (4). As we saw, it is unsuitable for
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selecting α, but now it can be used to compare alternative methods. Given regions

with low and high variability, the best sharpening is the one which maximizes the

statistic R12. With respect to the Lena image, we selected 3 disjoint sub-images of

size 100 × 100, placed on the main diagonal, starting from the upper-left corner.

These correspond to low, medium and high contrast areas; namely X(3) is nearly

flat, X(2) contains the head, X(1) includes the eyes. We made double comparisons:

high/medium and medium/low, and results are summarized in Table 1.

Several remarks are in order. First column reports the statistic (4) for the

original image; notice that the ratio R23 < 1, so that it seems that X(2) is less

contrasted than X (3). In reality, all of the sharpening methods provide R23 > 1. The

edge-detection method (9) gives the worst result, especially in terms of the global

statistic R12 + R23; this confirms the importance of negative edges. Despite of their

computational complexity and elegance, the performance of the spatial regression

methods (12)-(13) are similar to the classical ones (2)-(3). The modified method

(10)” corresponds to E∗∗
ij = sign(E∗

ij) max(E+
ij ,−E−

ij ), and actually improves (10).

The adaptive solutions (15) outperform the others and their global statistic is much

greater than that of the original image. Their performance can be further improved

with refinement of the adaptive weights and edges.

Table 1. Statistics (4) for various sharpening methods computed on 3 sub-

images of Lena (they have size 100 × 100 and are placed on the main diagonal).

Method Orig. (3) (9) (10) (10)” (12) (13) (15)+(3) (15)+(10)

R12 4.38 3.47 2.47 3.72 3.53 3.54 3.38 3.85 4.37

R23 0.66 1.05 1.10 1.11 1.55 1.21 1.24 1.97 2.53

Sum 5.04 4.53 3.57 4.83 5.08 4.75 4.62 5.82 6.90

We conclude the section by applying the adaptive sharpening (15)+(10) to other

testing images taken from Gonzales and Woods (2002). Results are reported in

Figure 11, where they are compared with the sharpening function of the MATLAB

package. Differences can be appreciated by enlarging the images, which shows the
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greater noise of the Matlab solution. Moreover, the mean value of the variance ratio

RY X (computed on the five images), is 1.34 for Matlab and 2.13 for the method (15).

This means that the adaptive approach achieves a greater signal-to-noise ratio.

Figure 11. Comparison of the sharpening function of Matlab and the adaptive

sharpening (15)+(10) for various classes of images; (please zoom on the panels).

(a1) − MRI                               (a2) − Matlab Shar
p                      (a3) − Adaptive Sharp

(b1) − X−rays                               (b2) − Matlab S
harp                      (b3) − Adaptive Sharp

(c1) − Elect. Micros.                       (c2) − Matlab S
harp                      (c3) − Adaptive Sharp
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(d1) − Satellite                            (d2) − Matlab S
harp                      (d3) − Adaptive Sharp

(f1) − The lake                             (f2) − Matlab S
harp                      (f3) − Adaptive Sharp

4. Conclusions

In this paper we have discussed statistical methods for digital image enhance-

ment. The two main contributions have been: i) new statistical measures for the

design of the sharpening parameter α; and ii) new adaptive techniques for the esti-

mation and the tuning of the edge component E.

In the first part, we have considered several statistics which relate the sharp-

ened image to the equalized one, which serves as a benchmark. These measures are

direct, as the mean absolute and quadratic distances, or indirect, as the Kolmogorov-

Smirnov and Pearson-Fisher statistics for testing the hypotheses of uniform distri-

bution. Furthermore, we also have considered complex measures based on higher

order moments (skewness, kurtosis, autocovariance, etc.) that are suitable for ana-

lyzing the effects of α. All of these measures tend to behave in a strict convex way

with respect to the tuning parameter. By standardization and summation, a global
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objective function can be achieved, which can lead to a unique solution. Numerical

experiments, carried out on various images, have shown the validity of the approach;

in particular, they have provided mild and similar values.

In the second part, we have changed the classical structure of sharpening filters.

In particular, the edges based on mean values have been replaced by residuals of

auto-regression models and by adaptive sums of positive and negative edges. Local

estimators for causal SAR models have been developed and their practical usage is

demonstrated. We have also developed an adaptive approach for tuning sharpening

weights on the basis of the local relative variability. This concretely solves the

problems of grain effect and noise diffusion which are present in classical techniques.

Also in this case, numerical applications on known testing images have shown the

validity of the proposed solutions.

Appendix

In this Appendix we briefly review the proof of the equalization formula Zij =
⌊

FX(Xij) 255
⌋

that was introduced in Section 2.3. For a grey scale defined on the

unit interval x ∈ (0, 1), equalization consists of finding a single valued monotonically

increasing transformation z = t(x) such that fz(z) = 1 for all z ∈ (0, 1). Using the

properties of probability densities, one has fz(z) = fx(x)dx/dz, and substituting

fz(z) = 1 and z = t(x), it follows that dt(x)/dx = fx(x). By integration, the

required solution becomes t(x) =
∫ x
0 fx(u) du = Fx(x), which is the cumulated

probability. Now, returning to a ni × nj real image with discrete grey levels Xk =

0, 1, 2 . . . 255, one has fX(Xk) = Nk/(ni nj), where Nk is the absolute frequency of

Xk. Hence, using the transformation one has Zk = t(Xk) =
∑k

h=1 Nh/(ni nj) =

FX(Xk). Finally, applying this to any pixel and rescaling and rounding the values,

one has the formula stated at the beginning.
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