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ABSTRACT

This work compares two classes of multiple time series models which have
been developed in past decades and are usually believed to be equivalent:
the vector ARMA model and the system of simultaneous transfer
functions (STF). The first part analyzes the mathematical structure of the
two schemes; their properties of.stability, structural identification and
realization. In the second, algorithms of order identification and
parameter estimation are derived, following the approach of stochastic
approximation. The proposed solutions are easily implementable on
standard statistical software and in an extended empirical example their
performance is checked. The superiority of the STF model will be well
established.
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JINTRODUCTION

Box and Jenkins (1970) introduced the class of transfer function models (TF) as an open-loop
multivariate generalization of the univariate autoregressive moving average (ARMA) scheme.
The extension followed a natural approach, by noting that an ARMA process {y,] sets up a
dynamic system having a non-observable white noise input {e;} and a rational impulse response
function: ‘ ‘
ARMA yi=y@Be,  vB=28 o INO0d)
¢(B)

with 8(B), ¢(B) finite linear polynomials and B the back-shift operator.

Thus, supposing we have an observable input {x;}, correlated with the output {y:}, the
extension has been obtained by adding a rational term as

w(B)

TF = U'(B)Xx_b + J/(B)a, . U(B = E(*B—) , ag ~ IN(O, 03')
where w(B), 6(B) are finite linear polynomials and b the delay factor. As for the univariate
0277-6693/91/050477-23$11.50 Received January 1989

© 1991 by John Wiley & Sons, Ltd. Revised March 1990



478 Journal of Forecasting Vol. 10, Iss. No. 5

models, the identification of the impulse response function v(B) has referred to the second-
order properties of the system expressed by the parametric cross-covariance function:

CCVF v (B) = v(B)B"yu(B), Yxx(B) = Yx(BWx(B ~ ')od

This raises the well-known question of prewhitening, i.e. v(B)B® o v (B) only if {x.} is
whitened.

Following the work of Box—Jenkins, the study of open-loop transfer function models was
continued by Pierce (1972), analyzing the properties of nonlinear estimators and by Box and
MacGregor (1974), investigating the consequences of feedback on identification. §olo (1978)
and Young and Jakeman (1979) developed a powerful dynamic extension of the framework
by means of recursive estimators able to track change of parameters and improving the
statistical fitting. More recently, Liu and Hanssens (1982) and Lii (1985) have defined efficient
parametric techniques of identification, based on the ‘corner method’, suitable in case of
multiple inputs, and Priestley (1983) has analysed the properties of linear estimators in the
presence of autocorrelated errors and feedback. The TF model has found wide application in
empirical analysis of causality in economics (see e.g. Maloney and Ireland, 1980; Grillenzoni,
1983b). This experience has provided a positive check on the performance of the method.

As in econometrics, a natural extension of the TF model to closed-loop multivariate (m)
process {z;} is yielded by a system of simultaneous transfer functions

STF z,= V(B)z;-» + ¥ (B)a,, a; ~ INy(0,%)

with V(B) = {v(B)}, ¥(B) = Diag[y:(B)] matrices of rational polynomials. In this context,
however, the identification approach based on the analysis of the second-order moments has
encountered a serious limitation in the extreme complexity of the covariance function matrix
of the system:

CVEM T'(B)=[I- V(B) "W BEVYB H{I- V(B )]

For bivariate processes, however, Haugh and Box (1977), Granger and Newbold (1977) and
Jenkins (1979) have implemented efficient ‘two-stage’ techniques of identification based on a
bilateral prewhitening of the series and a joint estimation of the impulse response coefficients
form the sample cross-correlation functions.

The difficulty of extending these techniques to general vector processes, their complexity and
tendency to overparametrize the models and the absence of packages for the joint estimation
of transfer functions equation have halted the study of SFT models, the sole exception being
the applied works of Hanssens and Liu (1983) and Liu (1987). The multivariate approach
which has prevailed in the 1980s is the vector ARMA (see Tiao and Box, 1981; Jenkins and
Alavi, 1981; Tiao and Tsay, 1983). This provides a formal matrix extension of the
corresponding univariate scheme, taken in linear form:

®(B)z; = O(B)e;, e, ~ IN,(0, %)
rB)=%B) 'oB)L6B ) &[B! !

where ®(B) = {¢;(B)}, ©(B) = {6,;(B)} are matrices of /inear polynomials. The advantages of
the approach lie in the non-specialized character of the vector ARMA,, structure, so that its
identification may be developed, in an aggregate manner, with scalar information criteria
(FPE, AIC, BIC, CAT, MDL, etc.). ,

Apart from the works of Zellner and Palm (1974) and Liu and Hudak (1985), in the
literature very little has been done to compare the structures of STF-ARMA,, models, and
many authors have simply stated that the two classes are equivalent. Now, although it is

ARMA,,
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formally possible to linearize the SFT model by row (obtaining a constrained ARMA,, with
O(B) diagonal), and although we can put the ARMA,, in rational autoregressive form
(obtaining a constrained STF with common denominator Det© (B8)). In substantial terms the
STF scheme seems. preferable to the ARMA,, for the following reasons:

(1) The structure with rational polynomials is more powerful and parsimonious than the linear
one;

(2) It has an unconstrained covariance function matrix I'(B), having polynomials of different
order; .

(3) It possesses a complete realization framework from the multivariate spectral factorization
theorem;

(4) It respects the different nature of auto and cross-dynamic regressions, treating each with
two specific filters ¥(B), V(B);

(5) The matrix V(B) is directly interpretable in terms of causal structure of the process {z);

(6) The univariate and orthogonal (£ = Diag) residuals enables a simplified estimation by row,

(7) Potentially, it may be identified in a disaggregate manner by means of the Box—Jenkins
techniques.

From these descriptive notes, it is apparent that the STF class is more general and flexible
than the ARMA,, one, and it tends to respect substantial rules of multivariate statistical
analysis. In what follows these considerations will be analytically and empirically developed.

MULTIVARIABLE SYSTEMS

In this section we analyze the structure and the properties of the system of simultaneous
transfer functions, comparisons with the vector ARMA,, model will be given. We consider a
vector stochastic process z/ = [21,, 22, ... Zm], zero mean Gaussian, stationary in covariance
and mean square summable (ergodic):

20 ~ N[0, ], Tk = E[z2i-k) = (vii(k)), ; ITk|l < 0

By the linearity of the regression (conditional mean) under gaussianity, these distributive
hypotheses are clearly equivalent to the SFT representation

= i Vigi-p-i+ f} Va,_j+a, a; ~ IN,, [0, £ = Diag(s?)]
i=0 Jj=1 )
- — ¥ (B)ar _ (wy(B)B” NS 1))
U= V=¥ VB ’“{ 5,(8) } Y®=b ’ag[qsi(a")]

where (8, wyj, i, 0;) are linear polynomials with degree, respectively (ry, sij, i, @i), finite; by, is
the delay factor of (zj, — zi,), b =min(b;). Moreover V(B) has zeros on the principal diagonal
and ¥(B), £ are diagonal matrices. In the following subsections we shall investigate some
analytical properties of the above representation.

Invertibility and stationarity
The conditions of stationarity relate to the possibility of representing the system in infinite
MA,, form (multivariate Wold decomposition). Having

2= [I-V(B)] ¥ (B)a =¥ (B, ¥(B) = {yy(B))
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from the definition of determinant as a sum of products and taking the least common
denominator $*(B) we may set Det[I— V(B)] = w*(B)/6*(B). Hence

Vy(B) = 8y(BY"(B)|:(B)"B) 11 11 ou(®
h#i [#]

The terms 8;;(B), which result by taking the common denominator in every cell of the adjoint
matrix [I— V(B)]®*, have quite complicated expressions, and practically they are functions of
all wyj, 6ij.

The matrix ¥ (B) can then be expanded in power series, only if the polynomials ¢;, »*, 8;vij
have roots outside the unit circle (stability). The sequence {¥} can also be obtained in an
aggregate manner by noting that [/ — V(B)] ¥ (B) = ¥(B) and equating products of matrices
corresponding to the same powers:

Vi=(I- Vo)-l[ Ek] Vi¥e-;+ \'irk]
j=1

Here, it is clear that a necessaiy condition for the convergence of {¥,} is the convergence of
{Vk}, i.e. the stability of each §;;(B).

The conditions of invertibility deal with the possibility of expressing the system in infinite
AR, form. Setting m;;(B) = ¢i(B)wii(B)[0:(B)d;j(B), we have

Y(B) '[I-V(B)z:=11(B)z = ay, [1(B) = {=j(B)}

Thus TI(B) can be expanded in power series only if the polynomials 6;, 6;; and w;Vij are,
respectively, stable and bounded on | B| = 1, the algorithm of calculation being

k
I = E Yilleoi— Vi

i=1

In summary, the general conditions of stability of the STF model are given by
Invertibility [6;(B),0:(B)] =0, |wy(B)| <,  |B|<1 (1a)
Stationarity  [6(B), $:(B), »*(B)] # 0, |B| <1 (1b)

Unlike the ARMA,, model, it is interesting to note that the two properties are interdependent
since they require the same condition on the polynomials é;;(B). Moreover, although 5%(B) is
‘automatically’ stable because 6*(B) = I17" I176;;(B) (assuming the 5;(B) are relatively prime,
i.e. without common linear factors), in general, it is not possible to establish conditions on the
wij(B) to raise the stability of w*(B). This situation is due to the fact that w*(B) is a complex
sum of products of polynomials, and that a sum of stable polynomials is, in general, still stable
only if its elements are, at most, of second order (see Appendix 1).

The definition of representations MA,,, AR, infinite and of the related properties of
stationarity and invertibility tries not only to satisfy formal requirements. As we shall see, the
first representation has a role in forecasting since the covariance of the /-step-ahead prediction
error utilizes the ¥, weights; the second, by expressing a; (non-observable) as a combination
of z, is crucial in estimation since the gradient is a linear function of a,.

Identification and realization
Using the moving-average representation we can obtain the expression of the spectral density
of {z;} in terms of the STF parameters. Let A€ [~ =, + 7]. Then

PE™=¥EMEVED), ¥ M =U- Ve Ve @
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Now, since the estimators of the system are functions of the second-order moments of the
process it follows that the STF scheme is identified only if the factorization (2) is unique.
Denoting the complex variable z = ¢~"*, in Appendix 2 we show that conditions to this end are
provided by:

(1) The polynomials [8;(z), w(2)], [¢:(z),06:i(z)] have no common factor;
(2) The properties of invertibility and stationarity (1) hqld; ) )
(3) [64(0) = ¢i(0) =6:(0) = 1], [wij(0) = w;i(0)], i.e. Vo= V¢, ¥ = Diag, ¥o=1.

The question of realization of system structures arises as an inverse problem to that of
representing the spectrum. Given the parametric expression of the spectral density I'(z), a
factorization must be defined which yields a transfer function ¥(z) (unique and minimal), to
be used for representing the process {z;} in the time domain. A fairly general starting point
is provided by the spectral factorization theorem of Rozanov (1967, p. 47), extended by
Hannan (1979, p. 85).

THEOREM

Let T(e™™), N€ [—=, +) a square matrix, hermitian, non-negative definite, rational and
integrable. Then a square matrix ¥(z), rational, non-singular, analytic in | z| < 1, exists such
that: T'(e™™) = ¥(e™™)¥(e*) . The factorization is unique if ¥(z)~' is analytic in | z| < 1 and
¥(0)=¥(0)’.

The proof of the theorem is achieved by construction and so defines an algorithm which has
practical relevance. The way of realizing the further factorization of ¥ (z) is what specifically
characterizes the type of system representation to be reached. This problem has received a
systematical treatment only in the state-space context, with the algorithms of Kalman, Ho-
Silverman and Rissanen (see Faurre ef al., 1979, for a good survey).

In the input—output context the realization of STF filters is immediate; - setting
¥(z)"! = [A(z) + C(z)], where A(z) is the principal diagonal and A (0) = I, C(0) = C(0)', we
obtain two solutions:

W@)=Ak@) " V@)= -4Ak)'C@)I, [12) = A@), W)= -C@AE) ™

From the above we may then conceive the existence of two equivalent STF representations,
yielding two kinds of uncorrelated processes: {n,}. {u;}:

[I-V(B)]z: = n, H(B)z: = u,
n, =¥ (B)a, [1- W(B)]u; =2
where cross-covariance CCV(n;) =0 and auto-covariance ACV(u,)=0. The latter is the
version with prewhitening, in which II(z) is the diagonal matrix of univariate ARMA filters.
For the vector ARMA model the matter is not so simple; the sole possible further
factorization of W¥(z) is very constrained. Indeed, if we set ¥(z)=®(z) '0(z),
¥ij(2) = 05(z)/Bij(z) we may only get

<'15(z)=Diag[ ﬁl B1(2)s .oy ﬁl ﬁ,,,j(z)], O@) =%)"Y (@)
J= Jj=

STF(1) { STF(2) [

which corresponds to a linearization by row of the rational MA representation z, = ¥ (B)a,,
assuming [Bi1(z), ..., Bim(z)] relatively prime vi. Alternatively, if we aim to realize a general
unconstrained, ® # Diag, ARMA,, structure, we must have as necessary one of the conditions:
(1) By(z) =B(z), B(z) = Det® (2)Vif, (2) [aij(z), Bij(z)] having common factors. That is, either
we must assume a stochastic process with constrained spectral density matrix (having functions
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vi(z) with common denominator | 8(z) |?), or go on to define (with (2)) a non-identified (and
non-minimal) spectral factorization.

In any case, the fact that only constrained matrices are realizable has the advantage of
simplifying the conditions of structural identification. Indeed, since models with one of ®(z),
©O(z) diagonal represent canonical forms, from the results of Appendix 2 it is easy to assess
that additional restrictions, such as Rank[®,:0,] = m (see Hannan, 1969), are no longer
necessary. This seems particularly important in the case of specialized ARMA,, models with
matrices of orders P= {p;}, Q= {q;} having unique maxima, because the rank condition
could never be fulfilled for m > 2.

In summary, we may conclude that the STF model, since unconstrained in rational form and
completely realizable, includes as a partlcular case the ARMA,, one, and is a candidate to
represent a more general class of processes.

APPROXIMATE ALGORITHMS

In this section we derive algorithms of identification and estimation that refer in general to
principles of stochastic approximation. Given the complexity of the STF model, the non-
rigorous approach of the approximation seems unavoidable. The proposed solutions, however,
have the advantages of simplicity and flexibility. They recall well-known procedures and are
easily implementable on standard software.

Disaggregate identification

Here, we provide elements that heuristically justify the use of Box—Jenkins techniques in the
identification of muluvarxable transfer functions. Consider the ith row of the system
- V(B)lz:=n:

m

2= Z v;(B)z;,- b, T My i=12,...,m
J#Ei

By multiplying the above expression with z;,_, ¥/, k, taking expectation and considering the
generating function, we obtain the system of deterministic equations:

v (B) yi®B) yu®B) ... yim®B) ][ va®)
ve@B) | _ | va® . .. : vi2(B)
vim.(B ) 'le.(B) y,,,,,; (B) v,-m'(B)
ie.
vi(B) = T's(B)vi(B), i=1,2,...m

Now, solving for v;(B) by extending the arguments of stochastic approximation to
algorithms of linear estimation (see Tsypkin, 1971, p. 65), that is, by approximating I'::(B) to
a diagonal matrix, we have vy(B)=vy(B)[vi(B), ¥ij. Moreover, assuming that
ACV(n;) = ACV(z;) it follows ii(B) = yi(B)¥i(B~')o?, Vi. Summarizing these results in
matrix terms, we may have the factorization

I':(B) = [1+ V(B)]T'n(B), I'a(B) = ¥(B)E¥Y(B™Y)

This, although approximate, enables a disaggregate identification of the STF model by
straightforward application of the univariate-unidirectional Box—Jenkins schemes. Note, in
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particular, that by using the STF(2) form, i.e. with prewhitening, we roughly get
’ Fu(B) e [I+ V(B)] 3)

Hence the orders (ry;, sij, bij) of each impulse response function v;;(B) can be derived from the
corresponding sample cross-correlation function ryu(k).

As an interpretation, the validity of the proposed procedure requires not so.much that the
process {z;} be weakly correlated, but more loosely that the CCVF; v;;(B) be small with respect
to ACVF; vii(B), and in general that the indirect interactions between the univariate processes
{zi» 2j.}, considered by pairs (i.e. between the functions v;;(B)), be low. This interpretation
clearly relates to concepts like principal components and partial correlation. Here, we recall
that for stochastic . processes, the second has been well investigated only for the
autocorrelation. In open-loop systems the partial cross-correlation function may simply be
defined as proportional to the marginal regression coefficients of linear systems:

k
PCCRF  {vik} € ye= | ) VjkXt—k + Nt
Jj=
This, however, has never been required in the identification of v(B). Moreover, if {x;} is white
noise, it is easy to assess that vex &« py (K), i.e. cross-correlation and partial cross-correlation
coincide. The approximate expression (3) seems then a natural multivariate extension of this
equivalence.

In time series the problem of spurious correlation (indirect causality) may sensibly be raised
only at the level of simultaneous correlations p;;(0), but not for the lagged ones, i.e. for the
whole CCRF p;i(k). On the other hand, about the approximation ACV(n;) = ACV(z,), we
note that the dumping action on the CCR of a prewhitening of the ACR is sure because
Var [rij(k)] = floii(h)pii(l)], but the effects of the reverse filtering are uncertain since
Var [rii(k)] = flpii(h)pi(!)] (for details see Box and Jenkins, 1970). As a consequence, it seems
that for stationary processes, summable in covariance (i.e. with restricted memory), the
hypothesis. of low indirect interactions of the pairs {zi,z;}, and thus of validity of the
proposed method, be acceptable. Finally, establishing approximations in the specification
phase does not create a serious problem in its own right. In fact, in this early step, only a
general idea of the dynamic inside the system is required. It will be the subsequent phases of
estimation and checking that must refine the first guess. The procedure of identification we
have defined, however, has the advantages of simplicity and disaggregation.

As regards the identification of the vector ARMA,,(p,q) model, we recall that the
multivariate extension it provides seems to be an exercise of matrix algebra. This means that
autocorrelation and cross-correlation are treated in the same way and therefore, by the
unspecialized structure of the model, the second becomes a trivial projection of the first.
Clearly, it is true that autorelationships are more powerful and significant than cross ones.
However, cross-correlation has a different nature (pi;(0) # 1, piy(K) #piy(=k), b>1,
CCR = PCCR), for which Box—Jenkins have set up autonomous apparatus of identification
and modeling (impulse response functions). Following these considerations a coherent strategy
of identification would seem to be

p =max;(pi), g = max;(q:)
where (pi, g:) are the orders of the univariate ARMA models of the series z;.
Pseudolinear estimation

One of the reasons the applied research on the STF model has been interrupted was the absence
of packages for the simultaneous estimation of rational equations. In this section we derive
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an algorithm for this purpose, which extends to the iterative-multivariate level the recursive-
univariate techniques called pseudo-linear regression (PLR; see Solo, 1978 and Ljung and
Soderstrom, 1983, for the ARMAX case). The method of estimation is fundamentally that of
non-linear least squares (NLS), and is characterized by approximating the gradient with the
input—output quantities of the system. It also has important connections with the instrumental
variables method (IVM) of Young and Jakeman (1979) which can highlight the meaning and
the properties of the algorithm.

Given the univariate-orthogonal structure of residuals, the STF model may be initially
estimated, without loss: of efficiency and consistency, by rows with NLS techniques. For the
ith equation, assuming common orders (r, s, b, p, q) to simplify the notation, we have

N 1-t N
NLS  Bitk+1)=Bi(k) + [tg Ei,(k)ﬁl,(k)] ;Zl £.(k)aik)

8.8 = {— MQ} a(8) = m(B)[Zz, ) vv(B)zj,-.,} @
aﬁt : J#EI

Bl = (8}, ey 8%y 08y ves @ty euvy ey oves @i 01, o0y 65,01, ..., 09
with m;(B) = 1/y:(B). To derive a useful expression of the gradient we define the auxiliary
variables wyj, = vij(B)Z,_,» Ni,= yi(B)ai. Hence standard calculus shows that
—3a,,(8:)]38%; = [mi(B)]84i(B)] Wij,-»
—3a;, (8wl = [m:i(B)]85(B) Zjis-
, —0ai (B3¢ = [1/6:(B)) ni._,
—aail(ﬂl)/aol = [llel(B)] Qi
The computation of the gradient thus consxsts in a filtering operation on observable (z),

auxiliary (w, n) and non-observable (a) quantities, by means of the same filters of the system.
The calculation of the ith residual is carried out in three steps

SiI(ﬁi) 'h=0:1,2---",5,17,q

@) wy,= Z 6liwl.h vt Z i’l’zjt—b—h

m

@) m,=zi,— 2 Wi
f=i

(iii) ai,=ni, —~ f: o, — é 0ta;_,
A=1 r=1

Recomposing the three steps, we may re-write the model in pseudolinear form as

m

Zi= 2 (OhWi, + @l ) + (d/mi_, + 0/ a;_) + a
JHAI
where
1
Wij = [wl.h 19 weey Wiji_ ! [aij’ veey ZI ! =5U
0 .
X (B) Zj = [ZJt by * -,er-b-,] ! [wija LEERY w{l] "= Wij B
i(Bi 1 P U
nh—l_ [nil—n""nit—p ! [¢i""’ ¢i]’ =¢i

1 q
2., = [air-l’"‘s air-q], [oi""aoi]’ =0;
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Hence

zi, = B xi(B1) + ai, )

where x;(8;) is the vector of pseudolinear regressors, depending on 8;.

Now, the pseudolinear estimator may formally arise from the NLS one by approximating
£.(k) = &i,(k) (i.e. by avoiding the filtering  with =;(B)/6i;(B) and 1/6:;(B)). Indeed, since
di,(k) = z;, — (k) Bi(k), substituting these quantities in equation (4) the PLR algorithm takes
on the compact form:

N -1 N ‘
PLR Bi(k+1)= [71 m.(k)ﬁ/,(k)] % sz, ©

This approach of derivation has important connections with the method of instrumental
variables developed by Young and Jakeman (1979) for TF models. To show this in detail we
assume, for simplicity, a STF system with m =2 and we consider the estimation of the first
equation:

2 = (W + whB+ - + wi2B®)
t

z +(1+0iB+---+0i’B")a
(1-8hLB— - —o0B) " (1-¢IB— - —oTB) "

As stated before, the assumption E[aya3,,,] =0vk guarantees no loss of optimality. Now,
the question originally posed by Young and Jakeman, in recursive terms, was that of deriving
simplified, but consistent, estimators of ‘the parameters vi»= [6}2...8%2,02...w12],
Vi =1[¢1...07,01...8{]. First, the analytical result of Pierce (1972) on the asymptotic
independence of the NLS estimates 912, ¥ enables us to set up the solution in sequential form;
i.e. estimation of vi; from the system zj, = v12(B)z2,., + n1, and then estimation of y; from
the realization 71, = 21, — 012(B)z2,_,. 4

About the first step, Young and Jakeman (1979) argue that the OLS estimator of via,
implemented on the linearized equation 612(B)z1, = w12(B)zz2,., + M1, With 71, = 812(B)ny,, is
not consistent due to the high autocorrelation of {51,}. However, this drawback can be
avoided by ‘flanking’ a set of instrumental variables to the vector of regressors
Z{2, = [Z1,_1 eee Z11ors Z2i_p »-+ Z20-5-,] - NOW, the most convenient set of instruments is certainly
represented by the auxiliary sequence wiz, = v12(B)z2,_,, Which can be generated in an adaptive
manner through the equation 612(B)wiz, = w12(B)z2,.,. Note that {wiz,] were already
pseudolinear regressors in equation. (6) but also are instrumental variables since they are
correlated  with {zJ and  independent of f{a@;,}. Thus, by defining
Xi2, = [Wi2,y... W12,.s 2204 -++ Z2,.5-,] the IV estimator becomes

N -1 N
IVM ¥k +1)= [g}l Xlzr(k)ll'z,] 121 R12,(k)z1, Q)

The resemblance with equation (6) is straightforward. Moreover, about the estimation of 4,
Young and Jakeman (1979) propose the method of approximate maximum likelihood
(AML), which, in practice, is a PLR scheme with the .vector of ‘regressors’ x{, =
[ny ... n,_,, a1, ... a1,_,] and the ‘dependent’ variable n;,.

The IV method can be improved by means of refined instrumental variables (RIV). To
introduce them we re-write the previous TF model as

a, = % [612(B)z1, — w12(B)22,-5], m(B) = z:((g))

Now, setting = (71/812)z1, Zz‘: = (m1/812)22,, the RIV estimator of v;; may again be obtained
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by applying the IV method to the linear equation 8:2(B)zf, = w12(B)z2,_, + a1 In practice, the
improved algorithm substitutes in equation (7) the refined instruments Xi, = (w1/612)X12, and
the filtered regressors zh, = (1/612)212,, obviously in iterative form. In this case, the estimates
¥12(k), ¥1(k) are no more computationally independent, but the gain of statistical efficiency
obtained in passing from IV to RIV is almost the same as that lost in approximating NLS with
PLR. Note. in fact, that the instrument x13, = 13, = — day,/dviz coincides with the gradient of
the estimator (4).

Although this example is difficult to extend to closed-loop STF with m > 2, it provides
important elements of interpretation and legitimation for the PLR method. Some words of
care are, however, in order. The pseudolinear regressors {w;_.}Vijk do coincide with
instrumental variables, but it seems that only in algorithm (7) do they play this role. In
practice, the IV method allows for the separation of estimates 912, ¥1 without affecting
consistency, while in the PLR context this holds asymptotically and under certain ‘passivity’
conditions of the system (see below). On the other hand, the instrumental nature of wiy, is
guaranteed only if 2z, is well correlated with z,,; a feature that in real data may be difficult to
have (see the next section).

To complete the comparison of PLR-NLS and IV-RIV methods we briefly consider their role
in identification strategies of parametric type, i.e. based on the optimization of some criterion
function related to the models. The first technique, concerned with IV-RIV and developed by
Young et al. (1980) and Young (1989), combines two negatively related test statistics: the
coefficient of determination R2, = 1 — 2[57 and the error variance norm (EVN):

N -1
YIC(r,s| b) = In(1 = R%:) + In (%), EVN = ;?i:_f tr [E) x,z,'] 62

The last provides the average variance of parameters and appears to be a sensitive indicator
of overparameterization. Indeed, if a model has too many parameters, then the instrumental
product matrix [ER:2z/] tends to singularity and so EVN increases sharply. Now, under
stability conditions, for a given b > 0, we have R?*—1 as r,s— N, but this, in turn, implies
EVN - . By taking logarithm the Young information criterion (YIC) then provides (in its
minimum) a good compromise between model fit and parametric efficiency.

-The second method, recently proposed by Poskitt (1989), is concerned with NLS
(Gauss—Newton) and minimizes the well-known criterion

In(N - b)
(N-b)

with (7, s, p, q) < In(N — b). With respect to YIC, BIC has a well-defined global minimum and
consistency properties, but it is computationally expensive. In any case, both these methods
heavily rely on a hypothesis that a true TF system exists. In contrast, real data are often
generated by irregular operators w(B)* = (wo + wiB’/ + w2B"**..)), periodic filters
¢ (B¥)=(1 — ¢1B* — $2¥ ~ -..) and, in general, by multivariate systems with sparse coefficients
at ‘strange’ lags. In these cases, non-parametric techniques of identification based on the
inspection of sample correlation functions (as that suggested in the previous subsection) are
preferable. :
Heuristically, algorithm (6) may also be derived by applying iteratively OLS to the
pseudolinear model (5). The crucial step, however, is made by the approximation §;, = x;, in
equation (4). It is the goodness of this approximation that actually influences the statistical
properties of the PLR method. Now, since the NLS estimator enjoys optimal properties
(convergence in mean square), and since the filtering to calculate the gradient is characterized

BIC(r,s,p,q|b)=In 62+ (r+s+1+p+¢q)
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by the rational polynomials 1/8:(z), 7:(z)/8;(z), the statistical behaviour of equation (6) must
relate to mathematical properties of the two filters. Thus, generalizing the analysis developed
by Ljung and Soderstrom. (1983, Chapter 4), for the recursive PLR estimation of ARMAX
models, we may state that the iterative version we have provided is-strongly consistent if the
monic polynomials of the system behave like passive filters:

i(e™) 1] [ 1 ] )
Re[——rx———w Y%orEe™ 2 >0 Re 0(e ) -3 >0 VAV

As Hannan and McDougall (1988) have proved, this extension is admissible since recursive
estimators arise from simple algebraic transformations of the corresponding iterative ones
(see Ljung, 1985). Hence, for stationary, time-invariable models the two versions are
asymptotically equivalent.

Finally, in presence of simultaneous correlatxon and assuming Vo = O, i.e. wi(0)= 0Vij, we
may define an improved system estimator through the seemingly unrelated structure

B' = [Bi,Bi,..., Bml
X= Diag[‘Xl,Xz,...,Xm], [xi,,xiz,...,xi,,] =X/
= [zlly Zé, erey z',"] s [zh’ Zizy veey ZiN] =z

Blk+1) = (X(k)' [E(k) ® In] 7' R(K)} ' X (k) [E(k) @ In] ™'z

This is the final expression of the iterative pseudolinear regression algorithm for the whole STF
system. As we may see, it can be easily implemented on standard statistical software.

The pseudolinear estimation of vector ARMA,, models has already been considered by
Spliid (1983). His derivation, however, is heuristic and so the analysis of the statistical
properties of the algorithm are not correct (see Hannan and McDougall, 1988). In what
follows we briefly reconsider the matter.

Since an ARMA,(p,q) can be recast in a vector ARMAu(1,1) form with
M = m-max(p, q), we shall consider, without loss of generality, the estimation of the model
z = $z;1 + Oe;—1 + €. Now let B=Vec[®:0]’, and define the multivariate expansion

«®) =@ -2 @-B.  z@)--[HO_[lab)]

the corresponding iterative NLS estimator then becomes
-1 N

NLS 5(k+1) ﬁ(k)+[z 2e(k)2 ’(k)] Zlft(k)éz(k)

=

Now, using rules of matrix differentiation, typical rows of E; are given by

. —0e,(B)[0¢y; = O(B) ' Jyzs-1 -
O A A R

where Jj; is a matrix with 1 in position ij and 0 elsewhere. Proceeding as before, we may then
realize a pseudolinear estimator by approximating the gradient with the input—output
quantities of the ARMA,, system: &}, = [2/-1,e/-1] VA, i.e. by avoiding the filtering with
©(B)™'Jy. Here, by extending at the iterative level the recursive analysis of Chen and Guo
(1987), we may state that this approximation does not affect the properties of the NLS
estimator only if the MA matrix behaves like a passive (or dissipative) filter.

Re[e(e”‘)" —%1,,,] >0, Ne [—, 7] ®)
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In his analysis Spliid (1983) has not considered this aspect and wrongly concluded that PLR
algorithms always converge. With respect to the STF model, we may note that condition (8)
is much more involved, and it might not be easy to check and satisfy.

Finally, the structure of the iterative pseudolinear regression which simultaneously estimates
all the system parameters [®:©:X], and so approximates the efficient maximum likelihood
estimator, is

X' = [XI,XZ, -"’xN]9 [zt,—lyet,—I] =xt’

PLR Bk+1)={[In @ X(K)]'[EGK) ® IN "' [Tmn ® X(K)]} ! ‘
[ ® X)) [Ek) ® In] 'z

This form is somewhat different of that provided by Spliid (1983), and heuristically derived
as an iterative multiple OLS estimator.AFrom the theory of seemingly unrelated equations, an
estimator of the dispersion matrix of 8(k) is given by

0(k) = ([In ® (k)] [E(k) ® IN) ™ I @ X(ON}™*

but this only is an approximation of the consistent expression provided by Spliid (1983) and
Hannan and McDougall (1988), based on the gradient =.(8). However, under the same
condition of convergence (8) (i.e. ©(B)= I,) the statistic (x tends to be a good
approximation, useful for inferential purposes.

AN ECONOMIC EXAMPLE

The problem considered for empirical comparisons turns on the analysis of the foreign sources
of price inflation in Italy. We define five economic variables: Z; = exchange rate lira/dollar ($),
Z, = index of wholesale prices (PI), Z; = index of export prices (PX), Z, = index of import
prices (PM), Zs = balance of foreign trade (B), f = monthly data 1973.01-1985.12 (N = 156).

Graphically, all the processes have evidenced components of trend. The analysis of
correlograms and variances on differenced series have shown that stationarity in covariance
may be reached with a difference of order one (1 — B) for all the variables. The corresponding
sample correlation functions are reported in Tables Al and AII in Appendix 3. Here, we may
note the simultaneous correlation of the prices due to the fact that PX, PM are the prices of
exported and imported goods (so that PI, PX, PM are synonymous). The series (1 — B)PI; and -
(1 — B)B; still exhibit a considerable autocorrelation (of AR(1) and MA(1) types, respectively),
whereas the others are practically white noises. Following the Box—Jenkins approach, to
identify the impulse response functions v;(B), an analysis on prewhitened series is
required. The corresponding univariate filters are (1 + 0.621B)(1 — B)Z;, = u1,, (1-B)Zs,=
(1 -0.763B)us, and the resulting sample correlation functions are given in Table AIIl
(Appendix 3).

Identification and estimation of ARMA;

Following the considerations above, in our data we identify an ARMAs(1, 1) model. Note,
instead, that the aggregate Tiao—Box statistics in Table AI (Appendix 3), at most, suggest an
ARs(2). The implementation of the PLR algorithm has required these steps:
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(0) OLS estimation of an ARs(3): z,=
SRk (0)2:-k

and generate &,(0) =z, —

(1) OLS estimation of z;=

Zé kat k+ €

$z:-1 + 68-1(0) + e,
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and generate &:(1) =g, ~
(2) OLS estimation of z; =

- & (Dze-1 — 6 (1)&-1(1)
‘bz: 1+Gé; 1(1) + e, etc.

In step (0) we overcome the need for initial values of the parameters &(0), & (0) (which in the
vector ARMA context are not readily available), by directly generating the series &:(0) with-an
autoregression of order p* > (p + g). This general solution of the initial value. problem makes
the pseudolinear algorithms more suitable than other efficient methods, not only from a
practical viewpoint but also from an analytical one. Indeed, initial values are crucial in the
search for the global minimum::

z
1 . ¢13 . . . 911 913 : e11—1 ell
Zy on - 2y . .0y €31 )
Z 1= - s . Z3,_y |+| Oy 0, . €, [+] 6,
24, ¢4l . ¢45 24, -1 . 944 54‘ _',1 34,
. . 0
25, 2 s L 52 Oss és,_, e,

In a first estimation the algorithm has not converged due, probably, to the simultaneous
correlation, the great number of parameters to be estimated (75) and the non-significance of
many ¢y, 0. A simplification of the model, obtained by eliminating all non-significant
regression coefficients (in the third iteration) and the introduction of a parameter of stepsize
0 < e < 1 such that (k) = e(k)B(k) + [1 = e(k)]B(k — 1) have improved the situation. In 13
iterations, with constant e(k) =1/2, convergence was achieved (Table I). The introduction of
e practically transforms the PLR algorithm in a step-variable estimator. For this scheme Stoica
et al. (1985) have indeed shown that the necessary condition (8) weakens to a condltlon of
positive reality: Re[0(z) '] >0, |z|=1.

Table I. Identification and estimation of ARMA,,

13=1284 (2.0) = 0.130 1.7 Gu= 0.073 (3.4) =832.2
$22=0.504 (8.7)  sa=-0.011 (=3.6) f33=-0.70 (-39 &= 092
$13=0317 (1.8) b= 0.130 (1.7 fuu=-0.16 (-2.0) 6= 658
$41=0.125 (2.6 fi=-170 (-2.5)  bs=-0.21 (=2.1)  64=306.0
$4s=5.900 (3.6) b= 0.010 2.5  bss=-0.67 (-8.3) Gs= 0.44

Note: The statistics in parentheses are f-ratios.

Identification and estimation of STF

Reasoning on Tables AII and AIIl, by applying the univariate-unidirectional Box—Jenkins
schemes we identify by cell the STF model below. Here, the orders of many impulse response
functions (in particular, those of rational polynomials 1/8;i(B)), .are at the limit of
acceptability. This forcing to non-linearity, however, is necessary to test the performance of
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the estimator:

- | (-mo+10:_1§l; o057 . | [ 1___%_; )BD f‘z“\ (1+68)a, )
1+ 8,8 : 1-5,8° ' | %] |\1+eB
k . N (I—_—(%‘;—Ba)B‘ (1:(;:33)3 r kzs') | (1-8,B)a,, |

As in the previous model, the philosophy of pseudolinearity may be used to obtain initial
values of the parameters. Indeed, by means of a set of ‘linear’ equations

G) zi= 8lji_, + @lZji_y + Nijis (i) Ai=afy_,, (iii) A;,=¢/Ri_, +6/8&,_, + ai

we sequentially. obtain the OLS estimates §;(0), &;;(0), é,(0), $:(0), 6:(0). In the second step
we first generate a white noise process {e;} with an autoregression of order pi> (pi+q).
Then the ARMA parameters. are estimated vai PLR. In the various iterations pseudolinear
regressors X; may be obtained with the three-step filtering procedure described above.

As a consequence of the non-linear forcing, the estimation has required an ad hoc search
for the function vsq(B) (fixing all the other coefficients), to find the narrow band of
convergence. Without stepsxze e(k) =1/2, other polynomlals like 1/834(B) diverge in an
oscillatory manner. In any case, in eight iterations convergence was achieved (Table II). The
validity of the disaggregate identification is shown by the statistical significance of the estimates
and by the fact that their signs coincide with what is expected from the correlograms.

Rapprochement of ARMA,, and TFS models

In the previous subsection may rational impulse response functions were at the limit of
specification. A linear modelling like vij(B) wij(B) is more realistic and flexible, and can
improve the speed of convergence of the estimators. The model that follows looks like a
closed-loop system of simultaneous ARMAX equations and thus provides a substantial

Table II. Identification and estimation of STF

Sis= 0387 (1.8) Su= 0625 (3.9) dn= 0.874 (1.9 &= 0341 (22) &se=—0.009 (~3.1)
&%= ~0.826 (=3.6) Gu= 0011 (4.4) &u=—0.498 (—2.2) b&s=—0468(-2.0) O5=-0.600(-7.2)
Sla= 0862 (2.9) &u=-0848 (-1.8) &= 0.114 (3.6) Ges= 6.53 (3.9 G =6315
6= 0936 (3.8) du=—0.005(~1.5) 8&;=-0.341(-4.3) §i= —0216 (-2.7) 2= 0.79
Sis=—0.658 (—=2.1) @2= 0541 (8.6) Sa= 0556 (1.2) &s3=-0.590(-2.2) é&3= 553
S1s=—587 (=2.3) &u= 0.143 (0.7) Ga= 0.083 (1.7) dsz= 0.019 (3.2) 84=265.6
fi= 0232 (28 Gu= 009 (4.3) Guz= 281 (22) 8u=-0.501(-2.00 é&s= 0.39
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Table III. Identification and estimation of ARMAX,,

G'i3=—0.652 (-2.8) d2= 0.503 (8.0) 4h=—0073 (-2.4) &ls= 649 (4.0) dh= 0007 (2.3
dh= 0655 2.7 &l=-0.007(-1.9) Sl=-0.101(-32) &3s=-478 (~3.0) &s=-0.551 (-6.6)
éhi= 112 (4.6) ah= 0010 Q.7 &3 =-0325(—4.0) Ga=—-0243(-2.9) & =624

&ls= 553 (-22) b= 0083 @37 fh= 0081 (1.7) &6h=-0013(-2.2) &= 0.8

éts= 7.62 (29 &h= 0038 (1.9 dh= 0073 (1.5 &h= 0023 (3.9 &= 513

b= 0231 (2.8) &h= 0814 (1.7 dl= 3.67 (2.8) &l=-0.019 (=3.1) & =242.6

b= 0009 (3.6) &%= 0650 (1.3) 6hL=-2.15 (~1.9) &h= 0023 (3.6) ds= 0374

&% 0.006 (2.3) &la= 0.114 (3.5) &ls= 0376 (2.4) él= —0.009 (-3.0)

compromise of the models considered so far:

i=12,....m

m

®:(B)zi, — ( § wij(B)zjl—b) =0:i(B)a
J*i

ARMAX,, [8(B) - Q(B)]z: = O(B)a;

The w¥ parameter are identified in the same position as the significant sample cross-correlation

coefficients. Convergence was achieved in four iterations and estimation results are given in

Table III.

The feasibility of a disaggregated identification for STF models, which emerges in this
section, shows the adaptability of the STF structure and its superiority with respect to the
ARMA,, one. This last, in fact, is rather rigid and can be completely specified only in an
iterative cycle of estimation and testing. In practice, from the sample correlation functions it
is not possible to identify which coefficients ¢%, 6% would turn out to be significant in
estimation. These are, however, heuristic considerations. Parametric comparisons which relate
to the operative behaviour of time series models will be developed in the sequel.

1 . -oB"+08%+0B" . —oB*+0B'\(z,) ((1+8B)a,
oB+0B>  (1+0B) : -0B'+o0B" 5 o,
oB+0B8° oB’+nB" 1 ®B*-0,B8°-n,B* . 2, |=| (1-9,B)a,
©B+0B" oB-nB° B’ 1 oB-oB8" |2, | |(1-68%,

. —oo,B’+m,8°—w,B'+co 1 -oB +o,B"* 1 z, (1"913)“5,

FORECASTING AND COMPARISONS

This section is-concerned with the analysis of forecasting algorithms and with the evaluation
of the forecasting performance of the multivariate systems considered previously. Prediction
techniques for vector ARMA and ARMAX models are straightforward generalizations of
those developed in the univariate context. However, for STF models there are inherent
complications. Below we shall propose a very simple and practical algorithm for STF which
relates to its pseudolinear representation and estimation. Finally, empirical comparisons of the
estimated models will be developed with typical statistics of prediction errors.

Jenkins and Alavi (1981) have provided a vector extension of the univariate prediction
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algorithms of Box and Jenkins (1970). In practice if ; is the algebra of the events generated
by the set of information {z:—x}¢ (past and present), the optimal /-step-ahead predictor
2:(I) = E[2:+1|3 and the related conditional dispersion matrix £(/) = E{ [z:(/) — z:+1] * | 34}
are given by

-1
2()=®12(0 = 1) + -+ + BpZrs1—p+ Otr + -+~ + Ogrsi—g, s= kzo Y IV} )

As regards the STF scheme, the extension of the unidirectional techniques of Box—Jenkins
leads to a great complication of calculations. This is the case of the approach that transforms
the model into a system of ARMAX equations, with a linearization by row:

[¢,-(B) g a,-,-(B)] 2= [w,.-j(Bm ® 11 a:u(B)] o+ [0.-(3) i a.-,-(m} a,
J#Ei J# h#j J#E

Algorithm (9) could then be applied but the number of matrices involved increases rapidly with
m. Moreover, searching for the common linear factors to be cancelled may not be easy.
Similar problems are encountered in utilizing the infinite linear representation which results
by expanding in Taylor series the impulse functions vi(B), ¥:(B):
I-b+1 o0

a()= D Vik(l-b—k)+ 2 Vizeri—o-k+ 2 Yidrer-k
k=0 k=1-b k=1

Now, a substantial simplification is afforded by utilizing the pseudolinear representation (5).
Indeed, if b=miny(by) >0 the predictor implemented on that form coincides with the
solution of m? single-equation sub-problems:

m

gy = 2 W)+ A (), i=1,2,..,m
J#i

Wi () = 83wy, = 1) + -+ + Wi, + 0§2ii (I = B) + - + @§Zjirros-s
ﬁir(l) = ¢,-lﬂ‘-'(l—- 1) + et ¢lpnit+l~p + ellait il oiqai1+l—v

A complication in this approach seems represented by the fact that the starting auxiliary
variables wy;,, n;, are. available only by filtering the whole sample of data {Z}}. However, as
we have seen, these quantities are generated in the estimation phase in an adaptive manner.
The variance of the STF predictor is still given by equation (9), where the ¥, weights are
computed as above.

Empirical comparisons of the forecasting performance can be developed in two ways: the
size of the prediction regions and the value of the errors |2:(/) — z:+1|. About the first
indicator, note that [z:+:| 3] ~ Nm [2:()), £()]. Hence the prediction region of probability
(1 — o) may be obtained from the quadratic relationship

() — 2] ' EO) 7 2 () = 2041] = x5 (m)

It is well known that the size of the corresponding ellipsoid of concentration is proportional
to the determinant | £(/) |, and in Table IV some values of this are displayed. We may see that
for I-small the volume is largely determined by | L |. Moreover, the values associated with
STF-ARMAX,, increase more gradually.

The limit of this test is that it depends on the quantities T, ¥, estimated on past data.
Moreover, it does not directly relate to the operative behaviour of the models. Out-of-sample
comparisons based on mean absolute prediction errors (MAPE; see Liu, 1987; and DeGooijer
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Table IV. Comparison of the variance |£(/) | of
prediction errors

I ARMAn STF  ARMAXq
I 3942899 1831615 1645809
3 12584743 6457322 5957136
6 12944955 9209172 8478442

12 12950172 14168371 14587210

Note: Recall that the generalized variance £ = £(1).

and Klein, 1989), avoid these problems. We propose a second version of such a statistic:

h v a - h - _
MAPEl(h|t)=% 3 Zt(l)z Zivi , MAPEz(l|h)=711- > Ztsa(l) = Zearei
t+1

t=1
where Z,=(1 - B)™%.. Note that in MAPE, the forecast origin (¢) is held fixed and what
varies is the forecast horizon (/), whereas MAPE; deals with the opposite situation. This is
motivated by the need for a discrepancy index which must be independent of the particular
¢ and able to provide significant results even for small /. On the other hand, a greater number
of post-sample observations is required to compute MAPE:.

Table V gives values of the two indicators on different lags &,/ and for each individual series
Z,. The forecast horizon of MAPE; is f=1986.01 —1986.12 while for MAPE, it is
t=1986.01 — 1987.12 with A= 12. The conclusions that can be drawn from the analysis of
Tables IV and V are important:

=1 Zt+r+l

(1) With in-sample comparisons the great superiority of the STF model, with respect to the
ARMA,, one, is well established by |£, | < 1/2| £, | (Table IV), but the same conclusion
cannot be stated in the out-of-sample context. This contradiction is due to the fact that
the first analysis is conducted on the stationary series a;, e;, whereas the second is made
on the integrated series Zj. In practice, due to the predominant role of the unit roots
(1 — B) on the stable components, multivariable models with the same degree (d) of
nonstationarity tend to have a close operative behaviour.

(2) Specific forecasting of the differenced series z; have re-established the superiority of the

Table V. Comparison of mean absolute prediction errors

- M A P E . M A P E
\oh Z Zn Z Zi Zs | Zi Zn Zs Zi Zs
A 1 0013 0004 002 0006 065 1 002 0001 0010 0011 035
R 3 0044 0009 0020 0011 057 3 0037 0005 0018 002 031
M 6 0027 0012 0015 0012 049 6 0063 0009 0015 0.018 032
An 12 0062 0011 0.017 0026 081 12 0095 0015 0026 0.032 0.29
S 1 0015 0003 0016 0004 071 1 0017 0001 0008 0.007 0.40
T 3 0032 0007 0011 0005 055 3 0028 0003 001 0010 0.32
F 6 0020 0008 0008 0006 051 6 005 0006 0015 0014 0.23
12 0054 0007 0012 0019 073 12 0076 0.008 0020 0023 0.1
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STF model. Indeed, the term ®’, utilized by ARMA,, in computing 2:(/ + 1), decays
rapidly with / so that MAPE — 1. On the other hand, by stressing the role of time delays
byj, STF has a broader prediction horizon. This feature can also be seen in Table V since
indicators associated with STF increase more slowly. A substantial improvement of this
performance could clearly be obtained with the specifications Vo = L, lower triangular,
or Vo= V¢ (in this case, a constrained estimation would be necessary).

(3) Although a significant superiority of the STF scheme can be deduced from Table S, a
relevant aspect appears to be the poor performance of both the models in forecasting the
series Zs,. The reason lies in the fact that Balance of Foreign Trade (B) is the direct
aggregation of several autonomous and temporary components (imports, exports, etc.)
and so it exhibits nonstationarity in covariance. These considerations enable us to state
that methodological research on multivariate systems is important but the future of time
series analysis is represented by nonlinear and nonstationary models (see Young, 1989;
Priestley, 1988).

In summary, the secret of the STF structure lies in the specialized treatment of auto- and
cross-dynamic regression (or ACR and CCR), more specifically in what the system engineers
call the interaction matrix, that is, the matrix D = {by) of time delays. Operatively, the vector
ARMA model remains a useful practical tool on which simplified and automatic techniques
of identification, based on scalar information criteria, can be applied. On the other hand, given
the multivariate structure of residuals, its estimation problems (either in pseudolinear or in
non-linear form) increase rapidly with the dimension m.

APPENDIX 1 (SUM OF POLYNOMIALS)

Proposition

Let {¢i(z)} " be m monic polynomials of orders p; < p, with real coefficients and roots lying
outside the unit circle: ¢;(0) =1, ¢i(z) # 0|z| <1 for all i. Their sum defines a polynomial
¢(z) with roots of the same kind, in general only if p=max(p;) < 3.

Proof
It is easy to see that ¢(z) has degree p and coefficients

m P m
6@=35 0@ =m+ 3 (; ¢,~)zi

If we consider the parameters of ¢;(z) as a vector ¢; € R”, associated with ¢(z) we have ¢ =
=" ¢i. Moreover, by hypothesis, ¢; € S; C R?, where S; is the region of stability of order p;.
Since ¢(z) and ¢(z)/m have the same roots it is clear that ¢/m € S, only if S; S Si+1 and Sp
is a convex set. In this case we would have ¢; € Sp, and ¢/m would form a convex combination
of ¢; in Sp. Si € S;i4+1 because a polynomial of degree p; is a particular case of one of degree
pi+ 1. However, Sp is convex only for p < 2 (see Box and Jenkins, 1970).

APPENDIX 2 (STRUCTURAL IDENTIFICATION)

The first condition (i) assures that the matrices [I— V(z)], ¥(z) be left coprime, such that, as
Hannan (1969) has shown, their sole admissible greatest common left divisor be a unimodular
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matrix U(z). The diagonality of ¥(z), however, compels U(z) to be also diagonal and, by
definition of unimodularity (tf(z) linear an:d DetU(z) constant), it must in addition be
constant: U.

Although any matrix‘@

(2)Q, with H(z) Diag [lu(z)/hi(z~")} and Q orthogonal
(arbitrary), will also- satisfy the spectral reprmntatwn of I'(z), because H(z)QQ'Hz ") =1
The matrix H(z){and so ¥(z))does not simultaneously enjoy the properties of stationarity and
invertibility (1). Indeed, if hi(z) has roots in |z| > 1, hi(z~") must have roots in |z| < 1.
Therefore it must be H@)=U constant, Moreover, it is easy to asgess that conditions (iii)
constrain U=Q =1

Fmally, the speclﬁcations in (iii), in pamcular Yo=¥{, are 1den¢1ﬁed because, by assumxng
the process z; uncorrelated, we would have I‘o = ¥o¥ ¢, that is, \Iro = JI‘o = PJAP’', which is
symmetrical and pesmve definite.

APPENDIX 3 (SAMPLE CORRELATION FUNCleNs)
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