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1. Introduction

A fundamental problem in the analysis of nonstationary time series is the detection

of turning points (TP), i.e., identification of periods where the series changes the sign

of its slope (e.g., Zellner et al. [24]). This topic is different from forecasting, which

is concerned with pointwise prediction of future values, nevertheless it is crucial for

planning control actions. For example, in macro-economics, knowing the beginning

of a recession leads to increased government expenditures and money supply. In

financial markets, it leads to selling equities, where correctness and timeliness of the

detection are fundamental for maximizing gains.

There are many approaches to the analysis of TP in economic time series; gener-

ally speaking they can be classified in three groups. The first consists of smoothing

series with adaptive filters; subsequently, first and second differences of the extracted

signals are evaluated as the order conditions of deterministic functions (e.g., Canova

[4, Ch. 3]). Another detection approach, mostly used in technical analysis of finance,

compares the pattern of moving averages with different window sizes; if short-term

averages cross the long-term ones, then a TP is detected. The second group deals

with local estimates of regression parameters, and uses them as indicators of the

local slope of the series. A change in the sign of slope coefficients indicates the

occurrence of a turning point. Some methods refer to linear models and recursive

least-squares (e.g., Ljung [17]); others are more sophisticated and consider Markov

switching regression models (see Marsh [18]). The third group comes from sequen-

tial analysis of change-point problems, and uses hypothesis testing of mean shifts in

probability distributions (e.g., Erghashev [8]). Typical test statistics are likelihood

ratio (LR) and cumulative sums (CUSUM), which are widely employed in quality

control of industrial manufacturing.

The aforementioned methods involve various technical problems. For example,

smoothing methods identify turning points on the basis of trend-cycle components

estimated on the entire data-set. This approach yields problems of accuracy of

endpoint estimates and timeliness when on-line detection is used. Time-varying

parameters require complex estimators, such as Kalman filter (KF) and expectation-

2



maximization (EM) algorithms, whose statistical properties are not well investigated

in conditions of nonstationarity and nonlinearity (e.g., Teräsvirta et al. [20]). As

regards testing methods, they treat turning points as if they were change points

in independent or stationary sequences. However, the loss of optimality of test

statistics in the presence of autocorrelation and nonstationarity may be considerable

(see Vander Wiel [21]).

In this paper we only focus on smoothing methods, and we compare their de-

tection performance. The methods are nonparametric (as the local polynomial re-

gression) and parametric (as the latent component model); one-sided (as the double

exponential) and two-sided (as Hodrick-Prescott). Statistical smoothers are natural

tools for turning point identification because they filter out the random elements

of the series and allow to monitor the trend component. However, they must be

adapted to on-line data processing in order to achieve timeliness (e.g., Wildi and

Elmer [23]). Some methods, as exponential smoothing (ES), can be easily cast

in recursive form; instead, two-sided filters (kernel regression and splines), require

sequential adaptation and suitable selection of the window size. In all cases, the

smoothing coefficients (bandwidths) of the various filters must be selected to fulfill

the final goals of financial activity.

Trading strategies usually pursue the rule of buying-at-low and selling-at-high

price; hence, they require early identification of local troughs and peaks of stock

values. In this paper we check the ability of various smoothers to detect turning

points and we evaluate their performance on the consequent investment decisions.

The fundamental idea is to select smoothing and alarm coefficients through the

maximization of the capital gain computed on past data. Next, the out-of-sample

profit can be evaluated on future observations with the same framework. Since

maximum gain occurs in correspondence of actual turning points, it follows that the

proposed solution also pursues unbiased detection.

The plan of the work is as follows: Section 2 presents smoothing methods and

shows their connections. Section 3 explains turning point detection and the implied

trading system. Section 4 applies the methodology to financial time series.
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2. Representation and estimation

To introduce the problem in a general way, we assume that the series are generated

by a non-linear and non-stationary process Yt. The representation which is suitable

in this case is the nonparametric one of Teräsvirta et al. [20]

Yt = f(t, yt) + v(t, yt) at , at ∼ IID(0, 1)

where f(·) is the conditional mean, v2(·) is the conditional variance, y′

t = [ Yt−1 . . . Yt−r],

r > 0 is the ”state” vector and {at} is an independent and identically distributed

(IID) sequence. Further, following the approach of additive models of Hastie and

Tibshirani [15], we also assume that the regression function can be decomposed into

the sum of two components

f(t, yt) = g(t) + m(yt)

where the first deals with the trend-cycle (low frequency) component, and the second

is nearly stationary in covariance.

Many authors define the turning points directly on Yt, or its realizations (e.g.,

Zellener et al. [24]); however, this approach is problematic because Yt is a stochastic

process. Since g(t) is deterministic, it enables a precise definition of turning points

as local troughs ti and local peaks si of the function itself, namely

ti : g(ti − bi) ≥ . . . ≥ g(ti − 1) > g(ti) < g(ti + 1) < . . . < g(ti + di) (1)

si : g(si − pi) ≤ . . . ≤ g(si − 1) < g(si) > g(si + 1) > . . . > g(si + qi)

for some (bi, di; pi, qi) > 1. Given the sampling interval [1,T ], we assume that the

double sequence {ti, si} contains n ≪ T/2 pairs, which can be ordered as

1 ≤ t1 < s1 < t2 < . . . < ti < si < . . . < sn−1 < tn < sn ≤ T

The aim of this paper is identification/detection of the periods {ti, si} by means

of smoothing methods for time series. There are two main classes of smoothers,

depending on the fact they have a one-sided or a two-sided structure.
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A1. Kernel regression. The most general kernel approach is Local Polynomial

Regression (LPR, see Fan and Gijbels [9]), which can also be applied to irregularly

observed series. In a fixed design context this yields the model

Ytk
= g(tk) + ytk

, 1 ≤ tk ≤ T, k = 1, 2 . . .N < T

where the ”innovation” yt includes the components {mt, at} and, therefore, it may

not be IID. However, the autocorrelation of yt does not change the bias of kernel

smoothers, and only influence their variance (see Beran and Feng [3]).

The LPR smoother in a possible continuous domain t ∈ [1, T ] is defined as the

weighted least squares estimator

ĝLPR(t) = arg min
g

{

1

Nσ

N
∑

k=1

K
(

t − tk

α

) [

(

Ytk
− g

)

−
p

∑

h=1

gh

(

t − tk

)h
]2

}

(2)

where K(·) is a symmetric density function (which provides local weighting), α > 0

is the bandwidth and g stands for the constant term g0 of the polynomial of order

p. For p=0 one has the simple kernel smoother (Nadaraya-Watson type) and for

p=1 one has the local linear regression (LLR). Major advantage of the latter is

the automatic boundary correction property, which significantly reduces the bias of

estimates ĝ(·) at the endpoints t1, tN . This feature enables to potentially use the

method for early detection of the turning points defined in (1).

At the computational level, the PLR estimator can be explicitly defined as a

weighted least squares (WLS) algorithm. Letting g′ = [ g, g1 . . . gp ] the vector of

parameters to be estimated in (2), and t′k = [ 1, (t − tk) . . . (t − tk)
p ] the vector of

regressors, it can be seen that

ĝN(t) =
[ N

∑

k=1

Kα(t − tk) tk t′k

]−1 N
∑

k=1

Kα(t − tk) tk Ytk
, t ∈ [1, T ]

A robust version of this algorithm has been developed by Grillenzoni [12]; it is both

in-sensitive to anomalous observations (outliers) and sensitive to sudden changes

in the level of the series. This feature is useful for detecting turning points in

correspondence of structural breaks, which frequently occur in financial series.

A2. Spline smoothing. Spline is another class of non-parametric smoothers

for irregularly observed data. The method looks for estimates which achieve a
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compromise between data-fitting and function smoothness. Typically

ĝSS(t) = arg min
g

{ N
∑

k=1

[

Ytk
− g(tk)

]2
+ γ

∫

[

g(h)(t)
]2

dt
}

where g(h) is the h-th order derivative and γ > 0 is a tuning coefficient that control

the trade-off between fitting and smoothness. The solution ĝSS is a piecewise poly-

nomial of degree (2h-1) between the points tk. For h=2 one has the cubic spline, and

for regularly observed time series the second component of the penalty function can

be computed as second difference. This actually corresponds to the filter of Hodrick

and Prescott [16]

ĝHP(t) = arg min
g

{ T
∑

t=1

(

Yt − g(t)
)2

+ γ
T−1
∑

t=2

[

g(t + 1) − 2 g(t) + g(t− 1)
]2

}

(3)

where for γ = σ2
(y)/σ

2
[d] (the ratio of the variances of the two components of (3)), the

corresponding smoothing spline is optimal in MSE sense.

At computational level, the estimator (3) can be rewritten in vector form as

ĝHP = F T (γ) yT , F T (γ) =
(

IT + γ H ′

T HT

)−1

where HT is a (T − 2) × T block diagonal matrix, with the triple (1,−2, 1) on

the main diagonals, and y′

T = [ Y1, Y2 . . . YT ] (see Danthine and Girardin [7]). As a

result, the weights of the matrix F T (γ) depend on the dimension T , and its rows

have a-symmetric path at the borders. This feature yields inaccuracy of endpoint

estimates; to improve them, one can augment the vector yT with out-of-sample

forecasts ŶT+k (see Mise et al. [19]).

B1. Kalman filtering. So far we have considered two-sided filters which esti-

mate ĝ(t) by smoothing past and future observations Yt±k with symmetric weights

(with the exception of endpoints). We now consider one-sided filters which process

data recursively and may involve parametric representations. The first one is the

unobserved components (UC) model, which assume that the trend function has a

double random walk structure (e.g., Harvey and Koopman [14])

Yt = gt + yt , yt ∼ N(0, σ2
y)
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gt = gt−1 + ht−1 + e1t , e1t ∼ IN(0, σ2
1) (4)

ht = ht−1 + e2t , e2t ∼ IN(0, σ2
2)

where yt, e1t, e2t are mutually independent and normal (IN). In the system (4), gt

represents the level component of the series, while ht stands for its slope. Both may

be useful for identifying the turning points of Yt.

By defining the arrays A = [ 1, 0; 1, 1 ], b′ = [ 0, 1 ], Σ= diag([ σ2
1, σ2

2 ]) and

x′

t = [ ht, gt ], e′

t = [ e1t, e2t ], the system (4) can be cast in state-space form as

xt+1 = Axt + et , et ∼ IN(0,Σ)

Yt = b′ xt + yt , yt ∼ N(0, σ2
y)

Now, by applying the forward Kalman filtering (see Ljung [17] or Grillenzoni [11])

one can obtain a recursive estimator which is simpler than that used by the authors

who developed the model (4)

kt = A Pt−1b
(

b′A b + σ2
y

)−1

P t = A Pt−1A
′ − kt

(

b′A b + σ2
y

)

k′

t + Σ

x̂t = A x̂t−1 + kt

(

Yt − b′x̂t−1

)

(5)

where kt is the filter gain and P t is the dispersion matrix. As regards the estimation

of the trend component, it is provided by the second element of the state vector;

namely, ĝUC(t) = x̂2t.

B2. Exponential smoothing. The most simple recursive smoother is the expo-

nentially weighted moving average (EWMA). An extention, which is suitable for

trend models, is the double exponential smoother (ES):

ŝt = λ ŝt−1 + (1 − λ) Yt

ĝt = λ ĝt−1 + (1 − λ) ŝt (6)

where λ ∈ (0, 1] is a weighting factor which gives more weight to recent observations.

The first equation can be applied to forecasting as Ŷt+1 = ŝt, and a multivariate

robust version has been discussed in Croux et al. [6].
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Also double exponential smoothing is concerned with forecasting. As in the

linear trend model, the forecast function is sum of level and slope components. In

the Brown’s approach these can be estimated with the statistics of (6)

level ât =
(

2 ŝt − ĝt

)

(7)

slope b̂t =
(

ŝt − ĝt

)

(1 − λ)/λ

Ŷt+k = ât + b̂t k

Further, recomposing (6) and (7) leads to the Holt-Winters algorithm

ât = λ
(

ât−1 + b̂t−1

)

+ (1 − λ) Yt

b̂t = λ b̂t−1 + (1 − λ)
(

ât − ât−1

)

see Chatfield et al. [5]. For the trend estimator, one can use either ĝt in (6) or ât in

(7), where the latter is less smooth than the first.

Several papers have shown the connections between HP, UC, ES methods, and

their relationships with other filters, see Harvey and Jäger [13] and Gómez [10].

The general conclusion is that they are asymptotically equivalent when the innova-

tion process yt is white noise and the tuning coefficients are properly selected; for

example, HP and UC converge to the same estimates when σ1=0 and γ=(σy/σ2)
2.

The connection between HP and ES follows by noting that exponential weights arise

from the optimization problem (3) by using first difference in the second term, i.e.

a matrix H with diagonal elements (1,−1). Further, the level component of the UC

model, corresponds to the simple ES filter st when σ2 = 0 and (σy/σ1)
2=λ2/(1−λ);

whereas the Kalman filter solution converges to the Holt-Winters algorithm when

(σy/σ2)
2=λ4/(1−λ)2 (e.g., Harvey and Koopman [14]). Apart from formal relation-

ships, empirical applications have shown the similarity of trend estimates provided

by the various methods (e.g., Alexandrov et al. [1]). On the contrary, significant

differences have been obtained for the cycle component, which sometimes lead to

prefer HP and UC methods (see Van Ruth et al. [22]).

In our presentation, we just noted that the non-parametric smoothers can work

in conditions of missing data, but are inaccurate at endpoints; instead, recursive
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methods need regularly observed series and suitable initial conditions for x̂0, s0,

etc.. In real-life applications, turning points must be identified sequentially, as

new data Yt become available. This implies that also two-sided methods must be

managed sequentially, starting from the first observation. This management rises

the problem of initial values, as in the case of recursive methods. For all filters we

solve the initialization problem by adding to the data-set an initial sub-sample of

size N , just rescaled to the level of the first observation, namely

Y ∗

−j = YN−j −
(

YN − Y1

)

, j = 1, 2 . . .N ≪ T (8)

The size of N is important for the quality of estimates on the left border and, in

the KF (5), it is associated to the period required to reach the steady-state.

Owing to the structure of their weights, the derivation of the recursive version

of two-sided smoothers is not possible. To speed up calculation of LPR and HP, we

use sequential versions based on a moving subsample of size N < T . For regularly

observed series, they are given by the first entry of the vectors

ĝN (t) =
[ t

∑

j=t−N+1

Kα(t − j) tj t′j

]−1 t
∑

j=t−N+1

Kα(t − j) tj Yj

ĝt,N =
(

IN + γ H ′

NHN

)−1

yt,N , t = 1, 2 . . . T (9)

where t′j = [ 1, (t − j) . . . (t − j)p] and yt,N = [ Yt . . . Yt−N+1 ]′. In Hodrick-Prescott

filter, the weights of the matrix F N also depend on the series length, therefore the

window size N should be designed together with γ.

The signal extraction capability of the filters (2)-(6) crucially depends on their

smoothing coefficients. A general method for selecting α, γ, σ, λ is the cross-validation

(CV), or its robust version (see Grillenzoni [12]). In sequential form, the CV ap-

proach corresponds to the prediction error (PE) criterion

(N̂ , θ̂)PE = arg min
θ

T
∑

t=2

[

Yt − ĝθ(t − 1)
]2

, θ = α, γ, σ, λ

where the estimates ĝ(·) are obtained with the data up to time (t−1), in recursive or

sequential form. For the parametric model (3), the maximum likelihood method can

be applied to σ′ = [ σy, σ1, σ2]. However, some constraints on the coefficients, such
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as σ1 = σ2, may be necessary to prevent identification and convergence problems

(see Grillenzoni [11]). In the next section we will define a selection strategy which

stems from the operational use of the models.

3. Turning point detection and financial decisions

Time series of stock prices and exchange rates are strongly nonstationary and non-

linear, but the methods discussed in Section 2 are suitable for trend estimation. Fi-

nancial investors are usually interested in timely identification of the turning points

of Yt, so as to take profitable decisions, such as buying low and selling high. We

assume that they follow investment strategies of long type, i.e. where the returns are

obtained from the increments of stock values. A complete trading-cycle is defined

as a buy action which is coupled with the subsequent sale; the corresponding capital

gain is the price difference in the two periods.

As in the definition (1), we assume that the trend function g(t) has n pairs of

turning points {ti, si} in the sampling interval [1, T ], and realizations of the process

Yt have turning points which are close to {ti, si}. This means that the variance of

the innovation series yt = Yt − g(t) is small compared to that of Yt. The total gain

in the period [1, T ] is provided by

GT (ti, si) =
n

∑

i=1

(

Ysi
− Yti)

and its expected value is
∑

i [ g(si) − g(ti)]. In the inter-cycle periods si < t < ti+1,

we assume that money is invested in low-risk activities whose returns cover the

transaction costs on equities. For the sake of simplicity, we do not consider short

strategies because they are risky and not very popular.

Since the points {ti, si}
n
1 are unknown, sequential methods must be used for their

identification; the natural approach is to estimate g(t) with smoothing methods and

then apply the definition (1). However, timeliness of the detection requires one-

step signaling, and this increases the probability of wrong decisions. To reduce the

number of false alarms, a tolerance value κ > 0 can be introduced; the detection
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rules then become

trough ti :
[

ĝθ(ti) > ĝθ(ti − 1) + κ
]

∩
[

ĝθ(ti − 1) < ĝθ(ti − 2) − κ
]

(10)

peak si :
[

ĝθ(si) < ĝθ(si − 1) − κ
]

∩
[

ĝθ(si − 1) > ĝθ(si − 2) + κ
]

where θ denotes the type of smoother, and ĝθ(ti) is estimated with data up to time ti.

To better understand the meaning of (10), one may rewrite the inequalities in terms

of [ ĝ(t)− ĝ(t− 1) ]. Unlike the detection rules based on first and second differences

(e.g., Canova [4, Chap. 3]), the advantage of (10) is that it directly identifies the

kind (trough or peak) of a turning point. Further, it stresses the role of the tolerance

coefficient κ, which reduces the number of false alarms.

Rather than fitting and forecasting, in this paper we are interested to check the

control capability of smoothing methods. This means evaluating the effectiveness

of investment decisions which stem from the scheme (10). The selection of design

coefficients θ, κ follows the same principle, and can be based on the function GT .

To be specific, we first define the maximum gain (MG) detected points as

(t̂i, ŝi)MG = arg max
t,s

GT (ti, si)

and since, from (10), they depend on the coefficients θ, κ we have

(θ̂, κ̂)MG = arg max
θ,κ

GT

[

ti(θ, κ), si(θ, κ)
]

(11)

In practice, we design the smoothers on the basis of their maximum profitability,

which implicitly means timely identification of the turning points. Obviously, also

the window size N can be inserted into the program (11).

The approach followed so far has implicitly assumed that the quantity of money

invested at each period t is constant. However, if only the initial capital is fixed,

and it is entirely invested and disinvested at each trading, then the implied gain

function becomes

RT (ti, si) =
n

∏

i=1

Ysi

/

Yti (12)

The reference value of RT is 1, but since log(RT ) = GT [log(Yt)], it follows that the

maximization of (12) leads to the same solution as (11).
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S&P application. We apply the methodology to the Standard and Poor’s (S&P)

index of the New York Stock Exchange, which is the leading indicator of many world

stock price indexes. We consider the daily SP500 series in the period [1999, 2009],

which consists of T=2767 observations (about 251 data per year). The series is

displayed in Figure 1(a), where the dramatic consequences of the crises of 2002 and

2008 are evident. Figure 1(b) reports the smoothed series generated by the filters of

Section 2, with heuristically selected coefficients; namely: LLR(α=30), HP(γ=105),

KF(σy=33, σ1,2=0.005), ES(λ=0.96). The one-sided filters KF, ES were initialized

as in (8), with a sub-sample of size N=250. As one can see, the methods LPR, HP

are nearly equivalent, whereas the others have greater variance and bias, in terms

of delay with respect to the two-sided estimates.

0 500 1000 1500 2000 2500

800

1000

1200

1400

1600
(a)  Original Series

Time : 1999 − 2009

0 500 1000 1500 2000 2500

800

1000

1200

1400

1600
(b)  Smoothed Series

Figure 1. (a) S&P500 series in the period [1999, 2009] and t1=30 Dec. 2005; (b)

Smoothed series: two-sided filters (red), one-sided recursive filters (green).

Figure 1(a) also displays the point t1=30 Dec 2005, which separates the in-

sample period [1999, 2005] (with T1=1760 data), from the out-of-sample period

[2006, 2009] (with T2=1007 data). Selection of the coefficients θ, κ with the approach

(11) is based on in-sample data, whereas the remaining data serve for evaluation. In

this context, the two-sided filters were implemented sequentially as in (8)-(9), using
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the window size N of the initiation sub-sample. Owing to the non-smooth pattern

of the objective function GT , the choice of initial values of N, θ, κ is very important.

These are selected by evaluating the function GT1
on a grid of values as in Figure 2,

which is conditioned on the choice κ=0.05.
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Figure 2. Contour of the gain function GT1
(N, θ |κ = 0.05), where θ = α, γ, σ2

e , λ,

on T1=1760 observations of the period [1999, 2005], of four smoothing methods.

Figure 2(a) shows that the gain performance of LLR is maximized by the value

N=100, whereas the ES method is relatively independent of N . These facts can be

explained with the structure of the smoothers (9) and (6). On the basis the initial

values identified in Figure 2, the optimization (11) was carried out with numerical

methods. The results are reported in Table I; it can be seen that one-sided smoothers

outperform the others by 2-3 times at out-of-sample level. The KF was implemented

with the constraints σe1
=σe2

, and σ̂y is estimated on the initiation sub-sample Y ∗

t .

Unlike ES, the performance of KF is hindered by its parametric complexity, which

also involves the highest number of trading cycles n. The HP filter needs the largest
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value of N and, therefore, it is extremely slow. As is natural, the value of n is

inversely proportional to the size of the tolerance coefficient κ.

Table I. Results obtained by applying (11) to S&P series: N is defined in (8)-(9);

θ = α, γ, σ2
e , λ are smoothing coefficients; κ is the threshold in (10); GT1

, GT2
are

in-sample and out-of-sample gains, T1=1760; n is the number of trading cycles.

Method Eq. N̂ θ̂ κ̂ GT1
n GT2

LLR (2) 126 245 .364 485 3 151

HP (3) 1115 58*107 .033 497 6 136

KF (5) 15 2/106 .063 423 10 312

ES (6) 32 .913 .121 529 4 419

ESo (13) 10 .981 .110 477 4 301

Trend estimates generated with the coefficients of Table I are displayed in Fig-

ure 3, together with the corresponding buy and sell signals. Unlike the two-sided

estimates of Figure 1(b), the results in Figures 3(a),3(b) are obtained with the se-

quence of right-endpoint values. In the out-of-sample period, all methods avoid the

crash of 2008, but only the recursive filters capture the buy signal in 2009.

Figure 3. Trend estimates (black), and buy (green), sell (red) signals generated

with the coefficients of Table I, of four sequential smoothers.
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(a)  LLR
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(c)  KF
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(d)  ES

The good performance of ES suggests its use in the context of the so-called

oscillation techniques (say ESo). Many traders try to identify the turning points of

stock series, by comparing one-sided moving averages of different size. Typically, if

the 50-days average crosses the 200-days average, then a turning point is identified.

Applying this principle to the smoothers (6), one has the detection rule

trough ti : ŝλ(ti) > ĝλ(ti) + κ

peak si : ŝλ(si) < ĝλ(si) − κ (13)

where the coefficients λ, κ can be selected with the method (11). The results for

S&P data are given in the last row of Table I. The gain performance of ESo is similar

to that of KF, and its components are displayed in Figure 4.
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Figure 4. Trend estimates and buy-sell signals generated with the coefficients in

the last row of Table I for the method (6)-(13): ŝ(t) (thin), ĝ(t) (solid).
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4. Conclusions

Investment decisions in financial markets require timely identification of turning

points of stock values. Smoothing methods for nonstationary time series have a

fundamental role in this analysis. In this paper we have considered four types of

smoothers and we have discussed their relationships in a sequential implementation.

Classical two-sided filters require a suitable moving window and present accuracy

problems at endpoints. On the contrary, recursive smoothers have faster adaptabil-

ity but their performance may depend on the parametric complexity. Exponential

filtering is recursive in nature and involves just one coefficient; hence, it is suitable

in situations which involve complex computations.

In the trading activity, smoothing coefficients must not necessarily optimize pre-

diction error criteria (namely pointwise forecasting), but should be able to timely

detect sparse turning points. The gain function GT , based on the sum of the differ-

ences between significant peaks and troughs of past data, can be constructed for all

filters. These functions are usually non-smooth and need efficient search algorithms

to find their global optimum. Obviously, the simpler the filter structure, the more

effective and stable the solution turns out.

The empirical application has shown that various smoothers are nearly equiv-

alent on the in-sample interval (as measured by GT1
), but differ significantly in

the out-of-sample period [2006-2009]. In particular, recursive filters outperform the

others by 2-3 times (in terms of GT2
). In general, all filters are acceptable because

provide a sell-signal during the year 2007, which avoid the crash of Sept 2008; how-

ever, only KF and ES detect the buy-signal in 2009.

Directions for further research deal with stability and robustness of the method-

ology in the presence of structural breaks (as that occurred in the fall 2008). In par-

ticular, one should analyze the sensitivity of coefficients to in-sample data and their

efficacy at out-of-sample level. Since parameters should be continously updated as

new data become available, an important issue is the design of T1 to be used in the

optimization of GT . If time-variability of the coefficients emerges, then adaptive

modeling of θt, κt should be developed.
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