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Abstract: Stock price series typically behave like random walks, i.e. first-order

auto-regressive models whose coefficients (roots) are on the unit circle. This paper

investigates time-varying unit roots (TVUR, i.e. roots which wander about unity),

and shows that their pattern is related to troughs and peaks of the observed series.

Under the assumption of smooth evolution, exponentially weighted least-squares

(EWLS) can track roots which wander on the unit circle and so can detect turn-

ing points sequentially. This allows to implement effective strategies of investment,

which also provide optimization criteria for selecting the tuning coefficients. Ex-

tensive application to Standard & Poor index and comparison with other methods

show the validity of the method.
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1. INTRODUCTION

Recent crisis in financial markets and the consequent instability of stock values, have

produced huge capital losses at investors, involving, in certain cases, bankruptcy.

There were also important effects on the real side of economy, with the beginning

of a downward phase for the business cycle. This storm has increased the need

for reliable forecasting models, as well as effective techniques of surveillance and

decision. The implementation of timely alarm signals is a fundamental goal both

for individual traders and managers of mutual funds, who pursue maximization of

fund share values. In these cases, the golden rule for obtaining capital gains is buy

low and sell high, as regard as the price level of equities. The optimal trading policy

then coincides with the early detection of turning points in financial time series, i.e.

the periods where the phases of expansion and recession begin.

The random-walk assumption (i.e. the autoregressive (AR) model with unit-

root) is widely accepted and tested in the long run for many financial time series.

It is unsuitable, however, for forecasting turning points because, in such processes,

peaks/troughs occur at completely random periods. In the last decades, owing to the

analysis of non-linear time series, the assumption of constant parameters has been re-

laxed. Indeed, many nonlinear AR processes (e.g. bilinear, threshold, exponential)

can be viewed as linear AR models with time-varying parameters (TVP). There

are also theoretical reasons, related to the representation of stochastic processes,

which lead to TVP models (see White’s theorem in Granger, 2008). Since exact

non-linearity is difficult to identify, models with changing coefficients has been in-

creasingly developed in econometrics and statistics. As a consequence, also the idea

of time-varying unit roots (TVUR) has been accepted

Following the approach of random coefficients, Leybourne et al. (1996) and

Granger and Swanson (1997) proposed the idea of stochastic unit roots (STUR),

which can also be treated with Bayesian inference (see Jones and Marriott, 1999).

Grillenzoni (1999) followed a semi-parametric approach, where the roots wander

smoothly around the unit value. By using recursive least squares (RLS), he derived

a sequential framework for testing for unit roots in real time. More recently, Basci
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and Caner (2005) considered threshold unit-root processes, where the variability of

the root is driven by a threshold variable. Steland (2007) investigated a change-

point testing problem where the root is unity only on a certain interval of time, and

is stationary elsewhere. All of these approaches were only concerned with testing

problems, rather than forecasting and control.

In Grillenzoni (1999) there was the insight that the level of nonstationary series

is related to the path of unit roots. In particular, when a root is greater than 1

−and the starting value of the series is positive− it generates trends, whereas below

1 it generates stable behaviors. Therefore, points where time-varying roots cross

the unit circle, usually correspond to turning points in the observed series. This

remark is important for implementing sequential techniques to identify peaks and

troughs in financial data. In this paper we exploit the idea of detecting turning

points by monitoring recursive parameter estimates, and we use this information to

build investment strategies for stock values.

In econometrics, the identification of turning points usually proceeds by smooth-

ing series with nonparametric filters and then applying the trend-cycle decomposi-

tion (e.g., Canova 2007). Technical analysis in finance just compares one-sided

moving averages having different sample size. Sequential analysis, and methods

of change point detection, compute statistics on the prediction errors of dynamic

models (e.g., Vander Wiel 1996). In this context, Frisén (2008) has developed a

semiparametric likelihood ratio (LR) based on changes in monotonicity of the trend

function. This method actually merges nonparametric smoothing and surveillance

statistics, and has been applied to economic and epidemiological data.

The plan of the work is as follows: Section 2 presents models and estimators and

explains the approach of turning point detection based on TVUR. Section 3 deals

with the selection of smoothing coefficients and proposes an approach based on gain

maximization. Section 4 compares the results with techniques based on surveillance

statistics of prediction errors. Throughout, an application to the Standard & Poor’s

(S&P) index is carried out to illustrate and evaluate the various methods.
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2. MODEL REPRESENTATION AND ESTIMATION

Analysis of non-stationary time series has a long history and has been developed at

various levels. Asymptotically divergent processes, such as AR models with char-

acteristic roots greater than one, were studied since 50s (e.g., White 1958). It

was found that common estimators have faster convergence rates, and only the

exact unit-root case involves nonstandard distributions (e.g., Fuller 1996). Non-

stationarity related to time-varying parameters (TVP) has a more recent history.

Many authors have preferred stochastic modelings, applying them also to unit-roots,

see Granger and Swanson (1997). This approach has close connections with non-

linear time series, and shares similar difficulties as concerned the analysis of model

stability and distribution of estimates (e.g., Yoon 2006). Deterministic TVPs do

not involve big analytical difficulties. For example, optimal test statistics based on

piecewise linear and smoothly changing parameters have been developed in process

surveillance (see Andersson et al., 2006).

2.1. Deterministic Parameters

In this paper we consider an AR(1) model whose parameter wanders about the unit

value; it also has heteroskedastic innovations with unknown distribution:

Yt = φt Yt−1 + et , et ∼ ID(0, σ2
t ) , Y0 = C > 0 (2.1)

φ̄ = lim
T→∞

1

T

T
∑

t=1

φt = 1 , σ̄2 = lim
T→∞

1

T

T
∑

t=1

σ2
t < ∞

More precisely: i) the sequence {φt} is deterministic and has a time-average φ̄ on

the unit circle; ii) the innovations {et} are independently distributed (ID) with

finite variances. The process (2.1) can be defined doubly nonstationary, in the sense

that it has both time-varying coefficients and roots locally greater than one. On

average, Yt behaves like a random walk; however, fluctuations of {φt} around the

unit value determine more complex patterns, such as local stability as well as local

trends. These features strongly depend on the path of the root, on which we do not

make specific assumptions; for example, φt can be either locally smooth or suddenly

changing. It follows that model (2.1) is fundamentally semi-parametric, and thus
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may also represent nonlinear dynamics of Yt (see Granger, 2008).

To show the effect of parameter changes on the trend of the series, we consider

the following switching parameter model

Yt =











φ1 Yt−1 + et , t ≤ t0 ; φ1 > 1,

φ2 Yt−1 + et , t > t0 ; φ2 < 1

Solving for the difference equation, with the initial condition Y0 = C, yields Yt =

φt
1 C +

∑t
k=1 φk

1 et−k if t ≤ t0; and for t > t0 the expected value becomes

µt = E
(

Yt

)

= φ
(t−t0)
2 φt0

1 C , t > t0

At time t0, the slope of the trend µt inverts and yields a turning-point in the

realizations of Yt. It should also be noted that sign of the slope (positive or negative)

depends on the sign of the initial condition C. For real time series, Y0 is selected

according to the initial values of the series.

Previous example extends to continuously varying parameters by investigating

the function µt =
∏t

i=1 φi C. Turning points of Yt depend on those of µt, which in

turn lie in correspondence of the values φt=1. As an example, we simulate the model

(2.1) with sample size T=1000, Gaussian errors et ∼ IN(0, 3), initial value Y0=30

and sinusoidal parameters φt = 1 + .01 sin(t/40), which yields .99 < φt < 1.01.

Figure 1 shows that fluctuations of the root around the unit value strongly influence

the level of the series. In particular, expansions of Yt are always anticipated by

excursions φt > 1, and periods ti where φti = 1 correspond to turning points of Yt.
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Figure 1. Simulation of the process (2.1) with sinusoidal parameters: series Yt

(solid), mean µt (dashed), parameter φt (dash-dot) (µt, φt are rescaled).
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2.2. Stochastic Parameters

To show the analytical difficulties raised by stochastic coefficients, we consider the

white noise model: φt = (1 + at), where at ∼ IID(0, σ2
a) is independent of et (e.g.,

Granger and Swanson, 1997). This model allows useful probabilistic properties to

the process {Yt} (e.g., Yoon 2006); however, it is quite unrealistic for real phenom-

ena. Indeed, economy usually changes slowly and random walk or AR models are

more sensible parameterizations, namely

Xt = θ Xt−1 + at , at ∼ IN(0, σ2
a) , X0 = 0 (2.2)

Yt = (1 + Xt) Yt−1 + et , et ∼ IN(0, σ2
e) , Y0 = C

For θ = 1, the realizations of Yt are asymptotically divergent; since real time series

cannot grow indefinitely, suitable conditions of stability must be introduced. In-

tuitively, there must be an inverse relationship between the coefficients θ, σa. The

condition θ < (1 − σa)
2 allows non-divergence of Yt (e.g., Grillenzoni 1993), and

means that the process Xt in (2.2) must always be stationary.

The deterministic parameter case has a more simple treatment. For models as

(2.1), the condition of stability is that the average value | φ̄ | < 1. This implies that

the series |φt | is uniformly bounded and is greater than 1 only for a finite number

periods. In this case the mean value µt =
∏t

i=1 φi C does not diverge.

Optimal estimation of the process φt = (1+Xt) of the model (2.2) is provided by

the Kalman filter. Under the assumption of Gaussian at, et, the same filter enables

to compute the likelihood function of the coefficients θ, σ2
a, σ

2
e . Unfortunately, the

maximum likelihood estimator may encounter problems of convergence due to the

redundancy of the noise variances, and the non-smoothness of the likelihood function

(e.g., Grillenzoni 1993). For these reasons, Bayesian inference is preferable, see Jones

and Marriott (1999), and Kwiatkowski (2006).

2.3. Estimation Algorithms

Given the semi-parametric nature of the model (2.1), one can use the weighted

least squares (WLS) estimator. Exponential weighting gives more weight to recent
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observations and is realized by a coefficient 0 < λ ≤ 1 which is inversely proportional

to the rate of nonstationarity of the model. In sequential form the estimator is

φ̂t(λ) =

t
∑

i=2

λt−i Yi Yi−1

/ t
∑

i=2

λt−i Y 2
i−1

σ̂2
t (λ) =

t
∑

i=2

λt−i
(

Yi − φ̂i Yi−1

)2
/ t

∑

i=2

λt−i

In recursive form it is widely used in system identification and has some connections

with the Kalman filter (see Ljung, 1999). This is evident by noting
∑t

i=2 λt−i →t

1/(1 − λ) and rewriting the algorithm as follows

êt = Yt − φ̂t−1 Yt−1

Rt = λ Rt−1 + Y 2
t−1

φ̂t = φ̂t−1 + R−1
t Yt−1 êt (2.3)

σ̂2
t = λ σ̂2

t−1 + (1 − λ) ê2
t

where êt are prediction errors and Rt is the denominator of φ̂t(λ).

Algorithm (2.3) requires the initial values φ̂0, R0, σ̂0; these have relative impor-

tance when λ ≪ 1 and can be obtained with OLS on a sub-set of data. Last equation

of (2.3) is the adaptive variance of prediction errors and resembles the autoregressive

conditional heteroskedastic (ARCH) modeling of σ2
t . The resemblance is, however,

superficial being ARCH a class of parametric models. Performance of the algorithm

(2.3) in tracking the unknown sequence φt has been studied under several conditions

of parameter variation (see Guo and Ljung, 1995). Assuming smooth evolution, the

WLS estimator can be designed to reach the minimum MSE.

Unlike φ̂0, σ̂0, the design of the weighting factor λ is crucial for the performance

of (2.3). As the bandwidth in kernel smoothers, it can be selected with a cross-

validation approach by minimizing the sum of squared innovations:

λ̂T = arg min

T
∑

t=1

(êt/σ̂t−1)
2 (2.4)

Under Gaussianity, a simple method to test for the variability of unit-roots on the

period [1, T ], consists of comparing the final value of the loss function in (2.4) with
∑T

t=2 (yt/σy)
2, where yt = (Yt − Yt−1), by means of F -statistic.
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2.4. Testing and Detection

In the context of statistical surveillance, an important problem is testing for the unit-

root hypothesis in a sequential way. Under the null φt = 1, the model (2.1) becomes

a pure random walk and classical methods could be used. However, test statistics

must be adapted to the TVUR alternative, which requires adaptive estimators. As

regards the Student statistic, Banerjee et al. (1992) referred to the rolling regression,

i.e. sequential OLS with constant sample size. For the algorithm (2.3), Grillenzoni

(1999) proposed an adaptive solution which converges weakly as t → ∞, λ → 1

St(λ) =

√

Rt σ̂
−2
t

[

φ̂t(λ) − 1
]

→L

∫ 1

0

W (s) dW (s)

[√
2

∫ 1

0

W 2(s) ds

]−1/2

where W (s) is a standard Brownian motion. Except for the term 1/ 4
√

2, the above

coincides with the Dickey-Fuller distribution which is used in classical tests for unit-

root (see Fuller, 1996 p. 642). To directly use the tabulated critical values, one

must modify the above statistic as Ŝt(λ) = St(λ) 4
√

1 + λ , which takes into account

the greater variability induced by the exponential weighting.

Now, the important fact for the paper is that the above framework can be used

to detect turning points in the series Yt, namely the periods where the slope of the

series inverts and new phases of expansion or recession begin. As in the comments

to Figure 1, the first approach consists of identifying the points where the estimates

φ̂t(λ) cross the unit circle. Points tk where
(

φ̂tk > 1
∣

∣

∣
φ̂tk−1 ≤ 1

)

are points of

expansion, whereas in the opposite case they are points of recession. The rationale

of this solution is that the root φt determines the local slope of the trend µt and its

threshold is automatically defined by the value 1.

The second approach mitigates the previous idea in that uses the statistic Ŝt(λ)

and upper, lower (U, L) critical values of the Dickey-Fuller distribution as tolerance

bands for the decision. Given the test size .01 ≤ α ≤ .10, and the acceptance region

of the unit-root hypothesis
[

Lα/2 , U1−α/2

]

, one can detect an expansion if Ŝt goes

above U , and a recession if Ŝt goes below L, namely

Expansion tk :
(

Ŝtk > U1−α/2

∣

∣

∣
Ŝtk−1 ≤ U1−α/2

)

(2.5)

Recession th :
(

Ŝth < Lα/2

∣

∣

∣
Ŝth−1 ≥ Lα/2

)
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In practice, the interval [L, U ] is the critical region for the occurrence of turning

points, whereas it is consistent with the stability of the trend slope.

2.5. S&P Case Study

We begin here an application to the Standard & Poor’s (SP) index of the New York

Stock Exchange (NYSE), which is the leading indicator of many stock prices. We

consider the daily SP500 in the period January 4, 1999 - December 30, 2009, for a

total of T=2767 observations (about 251 per year). Series Yt is displayed in Figure

2a, where the consequences of the crises in 2002 and 2008 are apparent. One of the

issues to check is whether the major peak of Sept. 2007 could be timely identified

or, at least, the big fall of Sept. 2008 early detected.
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(a)  SP500
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(b)  Root

φ t
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−4

−2
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S
t

time :  Jan 4, 1999 − Dec 30, 2009

Figure 2. (a) Daily SP500 index in the period [1999, 2009], with the point Dec 30,

2005 (△); (b) Estimates of φt obtained with WLS, λ=.99 (solid), and OLS, N=100

(dotted); (c) Student statistics under the null φt=1, and Dickey-Fuller 95% critical

values (dashed).
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Average analysis on the whole sample confirms the random-walk hypothesis,

because OLS estimation provides φ̂T=.999, σ̂e=15.23 and ST =-.51 (the Student sta-

tistic under the null φt=1). However, the cross-validation (2.4) yields the value

λ̂T =.37, which indicates parameter variability. Figure 2b confirms that φ̂t (2.3)

wanders significantly even with mild weighting, as λ=.99. For the sake of compari-

son, it also exhibits the estimates φ̄t obtained with a rolling regression of sample-size

N=100 (see Banerjee et al., 1992). Figure 2c provides the corresponding Student

statistics Ŝt, S̄t, together with Dickey-Fuller 95% critical values for N=100.

Owing to the sample-size relationship N=1/(1-λ), the rectangular window of

size N=100 should be equivalent to the exponential window with λ=.99. However,

one can see that OLS estimates in Figure 2b,c are less smooth than those of WLS.

This is due to the fact that WLS actually involves a greater amount of past data,

because λN 6= 0. The pattern of the root confirms that values φ̂t > 1 roughly

correspond to periods of expansion (buy) of Yt, whereas the others correspond to

phases of recession (sell). By following the indications of Figure 2b, one could detect

the fall risk for stock prices just at the beginning of 2008. Statistics in Figure 2c

confirm these insights and lead to local rejections of the unit-root hypothesis. This

test legitimates the use of the TVUR model (2.1) for the SP500 series.

3. DESIGN AND SELECTION OF COEFFICIENTS

Previous application has shown that heuristic selection of the coefficient λ and of

the limits U, L may not provide a close correspondence between the level of estimates

φ̂t , Ŝt and the location of turning points of Yt. In particular, Figure 2 shows that φ̂t

crosses the unit value too frequently and Ŝt is not a timely indicator by following the

rule (2.5). Investment strategies require suitable design of algorithms and decision

rules in order to achieve profitability (e.g., Lam and Yam, 1997; and Bock et al.,

2008). In particular, the optimal design of a trading system should be based on

the economic results of the system itself. In this section we follow this principle to

optimize the method of buying when φt > 1 and selling when φt < 1.
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3.1. Maximum Gain

Assuming only a viewpoint of long market, i.e. where the gain is obtained by

increments of stock values (short rule can be conceived as well), the optimal trading

problem is to identify the buy-sell sequence

{ti, si}n
1 : 1 ≤ t1 < s1 < t2 . . . < tn < sn ≤ T

which maximizes the total gain GT

GT (ti, si) =

n
∑

i=1

(

Ysi
− Yti

)

(3.1)

i.e. {t̂i, ŝi} = arg max GT (ti, si)

or its mean value GT /n, where n is the number of trading cycles (buy & sell) in the

period [1, T ]. Clearly, the sought sequence coincides with that of turning points of

expansion-recession of Yt. As in Section 2, {ti, si} can tentatively be identified with

the periods where φ̂t(λ) crosses the unit circle.

Random fluctuations of estimates may cause, however, false alarms or weak

signals, i.e. when φ̂t crosses the threshold 1 just for few periods. To reduce this

risk, one can smooth φ̂t with a one-sided moving average of few terms, or one may

delay the decision to the second consecutive signal, etc. As in the equation (2.5),

the definitive solution is provided by a tolerance band (1 ± κ) for values of φ̂t close

to 1. In this case, the trading sequence is identified as follows: ti the first time φ̂t

goes above 1+κ, and si the first time φ̂s goes below 1−κ, namely

Buy ti :
[

φ̂ti > (1 + κ)
∣

∣

∣
φ̂ti−1 ≤ (1 + κ)

]

(3.2)

Sell si :
[

φ̂si
< (1 − κ)

∣

∣

∣
φ̂si−1 ≥ (1 − κ)

]

It follows that {ti, si} depend on (λ, κ) and, instead of the criterion (2.4), one

can select the coefficients by maximizing the total gain, or its mean value

(λ̂, κ̂) = arg max GT

[

ti(λ, κ), si(λ, κ)
]

(3.3)

Similarly, if the initial capital is continuously reinvested, one could also estimate the

coefficients by maximizing the final relative gain, defined as

gT (κ, λ) =
n

∏

i=1

(

Ysi

/

Yti

)

(3.4)
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Taking logarithm it is clear that maximization of (3.4) is equivalent to (3.3). Given

the inverse relationship between alarm delay and expected utility (e.g., Frisén 2008),

it is clear that the rule (3.3) allows unbiased detection of turning points.

Objective function GT is usually non-smooth and may have several local max-

ima. Since it has only two entries, it is possible to identify the position of the global

optimum by exploring its surface on a grid of values of λ , κ. Subsequently, numerical

optimization methods can refine the search. To test the out-of-sample performance,

we carry out the optimization (3.3) only on the first T1 ≪ T observations; next we

compute the (out-of-sample) gain on the remaining T2 = T − T1 data. With this

approach, we are interested to test the reliability of the method and to check the

stability over time of the estimates λ̂, κ̂.

3.2. S&P Case Study

In the SP500 case study, we selected T1=1760, which corresponds to Dec 30, 2005.

Figure 2a shows that the training period [1, T1] is sufficiently complete, in terms of

expansion and recession phases, and the index change is negligible, i.e. YT1
≈ Y1.

As in other studies (e.g., Bock et al. 2008), we have placed the first buying signal at

t1=1 (Jan 4, 1999). Figure 3 plots the contour of the gain functions (3.1) and (3.4),

evaluated on [1, T1] for a grid of values of λ, κ. Their pattern is similar, relatively

smooth and convex, and show an inverse relationship between the coefficients. This

is natural because as λ decreases, the variability of estimates φ̂t increases; therefore,

larger tolerance limits ±κ are needed.
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Figure 3. Contour of functions GT (3.1) and gT (3.4) for T=1760 data of SP500.
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The optimization (3.3) provides λ̂=.963, κ̂=.0021 and GT1
=440, with just two

trading cycles: (t1, s1)=(1,449) and (t2, s2)= (1094,T1). By extending the analysis to

the whole period, one obtains (t2, s2)=(1094,2168) and (t3, s3)=(2588,T ), with the

out-of-sample gain GT2
(.963,.0021)=+388. Further, the values of λ̂, κ̂ on the whole

sample [1, T ] do not change significantly. Figure 4 displays the estimates φ̂t(.963)

and the alarm signals (ti, si).

1999 2001 2003 2005 2007 2009
0.992

0.994

0.996

0.998

1

1.002

1.004

time :  Jan 4, 1999 − Dec 30, 2009

Figure 4. Graph of φ̂t(.963), bands (1 ± .0021) and trading points ti(△), si(▽).

With respect to the heuristic estimate φ̂t(.99) in Figure 2b, one can see that φ̂t

in Figure 4 is more reactive and enables to track the positive rally of SP500 in April

2009. Curiously, inverting the decision rule (3.2) (i.e. buying when φ̂t > 1 − κ and

selling when φ̂t < 1+κ) increases the in-sample gain as GT1
(.83,.001)=857; however,

this happens at the cost of inflating the number of trading signals as n=103, and

making the out-of-sample gain very negative: GT2
(.83,.001)= −356. These side

effects show, once more, the importance of tolerance bands 1 ± κ to reduce false

alarms and to avoid wrong decisions.

As regards the evaluation of the relative gain function (3.4), out-of-sample it

provides gT2
(.963,.0021)=1.43, over 4 years. In terms of gross annualized return

1.431/4−1, it corresponds to more than +9%, which is very positive, because on the

period Jan 2006 - Dec 2009, the index performance was negative: YT/YT1+1=0.89.

These conclusions do not change by adding the annual rate of dividends which, on

SP500, is about +2% (see Standard & Poor’s, 2008).
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3.3. HSI Case Study

As a further application, which introduces other methods, we consider a case study

discussed in Lam and Yan (1997) and Bock et al. (2008). It deals with the Hang

Seng Index (HSI), of Hong Kong stock exchange, in the period Feb. 10, 1999 -

June 26, 2002, for a total of T=829 observations. The authors consider the series

in logarithm and select the model coefficients on the first T1=71 observations. By

comparing CUSUM statistics, adaptive filters, hidden Markov models and LRs, they

find that best method is a semiparametric LR which tests the change in monotonicity

of the trend function µt (see Andersson et al., 2006). In particular, by selecting the

alarm limit on the T2 segment, they obtain GT2
= 0.32 with n=49 sell signals.

In our application, we trained the method (3.2) on the data of 1998, obtaining

λ̂=.625, κ̂=.00006; on T2 these yield GT2
=0.51 with n=56 cycles. The performance

remains good also by subtracting a transaction cost k=0.1% (0.2% per cycle), or by

dividing the total return by n. Figure 5 displays graphical results; one can see that

TVUR method can work in situations where frequent tradings are required.
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Figure 5. (a) Log of HSI from Feb. 10, 1999 - June 26, 2002, with trading points

ti(△), si(▽) signaled by method (3.2); (b) Estimates φ̂t(.625) and bands (1±.00006).
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4. COMPARISON WITH OTHER METHODS

In this section we compare previous results with those of surveillance and control

methods. These originate from quality control charts of industrial manufacturing,

and Lam and Yam (1997) and Blondell et al. (2002) have applied them to eco-

nomics. Recently, Bock et al. (2008) have provided a comprehensive comparison of

surveillance methods for finance, focusing on the trend model

Yt = µt + εt , εt ∼ IN(0, σ2
ε) (4.1)

where µt = E(Yt) is a smooth function with peaks and troughs at unknown periods,

and {εt} is independent normal. This differs from change-point models, where µt

is locally constant with jumps and discontinuities which must be identified with

sequential tests. For the model (4.1), Frisén (2008, Ch.3) has proposed a semi-

parametric LR method which signals changes in monotonicity of µt. This function

is estimated with restrictions of monotonicity under the null, and restrictions of

unimodality (U-shaped) under the alternative. The method provides sequential

detection of turning points, and represents a powerful alternative to nonparametric

smoothing of Yt and trend-cycle decomposition of µt (see Canova, 2007 Ch.3).

4.1. Control Statistics

As in adaptive control literature (see Vander Wiel, 1996; and Ljung, 1999), in this

section we refer to the dynamic model (2.1), and we compute monitoring statistics

on the prediction errors of the algorithm (2.3). This has the advantage of working

with a series {êt} which is nearly stationarity and independent; hence, it fulfills

the conditions for the optimality of test statistics. The basic intuitive idea behind

adaptive detection is that large prediction errors ê∗t tend to occur in correspondence

of turning and change points. It then follows that a simple signaling rule consists

of comparing the size of the errors with their standard deviation σ̂e.

Since structural changes generate patches of significant errors, cumulative sums

(CUSUMs) of êt are more robust indicators. Control charts usually adopt the two-

sided form of such statistics (see Vander Wiel, 1996)
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C+
t = max

[

0 , ( C+
t−1 + êt − η )

]

, C+
0 = 0 (4.2)

C−

t = min
[

0 , ( C−

t−1 + êt + η )
]

, C−

0 = 0

where C+
t is sensitive positive shifts in the mean of et, and C−

t is sensitive to negative

changes; η > 0 is the tolerance value (typically η = σe). This scheme gives an alarm

when max(C+
t ,−C−

t ) exceeds a threshold κ > 0; this value is selected so as to

minimize the number of false alarms, or the delay in detecting a real change.

Application of the above framework to financial trading make necessary changes,

because stock price series are clearly nonstationary.

1. The reference model should be (2.1), and the algorithm (2.3) provides the

required prediction errors. Given heteroskedasticity, CUSUM statistics C±

t

must be computed on the standardized errors ût = êt/σ̂t−1.

2. Because prediction errors tend to be negative when a recession starts, whereas

they are positive when an expansion begins, the decision rules become:

Buy ti :
(

C+
ti

> κ
∣

∣

∣
C+

ti−1 ≤ κ
)

(4.3)

Sell si :
(

C−

si
< −κ

∣

∣

∣
C−

si−1 ≥ −κ
)

3. The control coefficients (η, κ) can be selected automatically as in (3.3), by

maximizing the in-sample gain on actual data. This avoids the design based on

average run lengths (ARL), which involves complex computations and difficult

interpretation. Further, Vander Wiel (1996) showed that when the process Yt is

random walk, then the ARL-performance of main control statistics (including

the LR) worsens significantly.

Notice that the CUSUM statistic used in econometrics C0
t =

∑t
i=1 êi tends to re-

produce the random walk series Yt. Therefore, in order to use C0
t in place of (4.2),

its value must be reset to 0 whenever it passes its alarm limit κ

C0
t =











C0
t−1 + êt/σ̂t−1 , if |C0

t−1| ≤ κ,

êt/σ̂t−1 , if |C0
t−1| > κ
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The exponentially weighted moving average (EWMA) of êt follows the same principle

as CUSUMs, but gives more weight to recent errors. With respect to the two-sided

indicator (4.2), the major problem of EWMA is its inertia in staying in the state

(positive or negative) of a signaled alarm. This may cause loss of timeliness in

detecting turning points which are close to each others. As a solution, one may

adopt the resetting adjustment used for C0
t . Thus, using the indicator function

I(·), the modified EWMA statistic becomes

Mt = (1 − λ) Mt−1 · I
(

|Mt−1| ≤ κ
)

+ λ êt/σ̂t−1 , (4.4)

where κ > 0 is the alarm limit. The decision rule for EWMA is similar to (4.3), that

is: Buy when Mt > κ and Sell when Mt < −κ. The coefficients λ, κ can be selected

with the gain criterion (3.3); for reasons of parsimony, it is sensible to use in (4.4)

the same λ as (2.3). This could reduce the alarm capability of Mt, in which case it

may be useful to exchange λ and (1 − λ) in the equation (4.4).

4.2. S&P Case Study

Before applying these schemes to the SP500 series, we test the performance of the

so-called Shewhart method, which consists of monitoring individual prediction er-

rors. As stated before, negative errors indicate beginning of a recession, therefore

the decision rule is: Buy when êt/σ̂t−1 > κ, etc.. Selection of the coefficients, by

maximizing the in-sample gain, gives λ̂=.95, κ̂=2.9, with GT1
=331 and n=2 cycles.

1999 2001 2003 2005 2007 2009

−100

−50

0

50

100

time :  Jan 4, 1999 − Dec 30, 2009

Figure 6. Prediction errors êt(.95) and tolerance bands ± 2.9σ̂t−1, computed with

the algorithm (2.3) on the SP500 series.
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The out-of-sample performance is positive GT2
=130, but is less than half of that of

TVUR. This is due to the fact that Shewhart method does not pick up the expansion

phase started on April 2009. Figure 6 plots the series êt(λ̂) and the confidence bands

±κ̂ σ̂t−1, together with the alarm signals.

Eta

K
ap

pa

1.0 1.4 1.8 2.2

1

2

3

4

Figure 7. Contour of the function GT (η, κ|λ = .97) of the CUSUM method (4.2)

for T1=1760 data of SP500.

In applying the CUSUM scheme (4.2), Figure 7 shows the contour of the gain

function GT1
(η, κ), conditioned on the a-priori value λ=.97. The surface has two

local maxima at (1.6,1.8) and (1,4); the second one has a larger value of κ and,

therefore, involves a smaller number of trading cycles. On the basis of these ini-

tial values, numerical minimization of (3.3) provides λ̂=.965, κ̂=1.34, η̂=1.66 with

GT1
=330 and n=2. The out-of-sample performance is positive GT2

=+130 and is

identical to that of the Shewhart scheme. Figure 8 shows the CUSUM statistics

C+
t , C−

t , together with the trading signals on the whole period [1,T ].

1999 2001 2003 2005 2007 2009
−2

−1

0

1

2

time :  Jan 4, 1999 − Dec 30, 2009

Figure 8. CUSUM statistics C+
t , C−

t in (4.2) and alarm bands ± κ̂ for SP500.
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Last analysis concerns the EWMA statistic (4.4). Selection of the coefficients

with the criterion (3.3) on the first T1=1760 observations provides λ̂=.950, κ̂=2.73,

with GT1
=331 and n = 2 tradings. The out-of-sample performance is slightly inferior

to the previous ones, since GT2
=+113. Figure 9 provides the path of the statistic

(4.4), with the trading signals on the whole sample.

1999 2001 2003 2005 2007 2009
−4

−2

0

2

4

time :  Jan 4, 1999 − Dec 30, 2009

Figure 9. EWMA statistic Mt in (4.4) and alarm bands ± κ̂ for SP500.

4.3. Some Comparisons

Table 1 summaries the main numerical results of Sections 3 and 4 as concerned

the Standard and Poor’s case study. There are four main remarks:

1. The time-varying unit-root (TVUR) method outperforms the others, especially

at out-of-sample level. This is a consequence of the stability of its coefficients,

which enables to pick up the expansion phase started on April 2009.

2. Methods based on control statistics provide similar results. This is due to the

equivalence of their alarm capability in the case of random walk processes (see

Vander Wiel, 1996). Indeed, SP500 and the model (2.1) belong to the class of

random walks. The relative difference of EWMA may be due to the fact that

its coefficient λ is constrained to that of the algorithm (2.3).

3. The annualized gross return rates rout, show that all methods are preferable

to the naive investment strategy of buying and holding, even considering the

return coming from dividends.
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4. Inversion of the decision rule can provide a significant improvement of the

in-sample gain; however, this happens at the cost of increasing the number of

trading actions and deteriorating the out-of-sample performance.

Table 1. Summary of numerical results of the SP500 case study: λ̂, κ̂, η̂ are coeffi-

cients which maximize Gin; this is the in-sample gain (3.1) computed on the period

[1999, 2005]; Gout is the out-of-sample gain on [2006, 2009]; n is the number of trad-

ing cycles; gin, gout are the relative gains (3.4) and rout = g
1/T2

out − 1 is the annualized

rate. S-inverse is the Shewhart method based on the inversion of the decision rule.

Method λ̂ κ̂ η̂ Gin n Gout gin gout rout %

TVUR (3.2) .963 .0021 . 440 3 388 1.47 1.43 9.4

Shewhart .95 2.90 . 331 2 130 1.31 1.10 2.4

CUSUM (4.3) .965 1.34 1.66 331 2 130 1.31 1.10 2.4

EWMA (4.4) .95 2.73 . 331 2 113 1.31 1.09 2.2

S-inverse .965 1.91 . 693 20 −158 1.76 0.91 −2.3

As regards the last point, the rationale of inverting the decision rules (e.g.

buying when prediction errors are negative) corresponds to the so-called ”contrarian

investing”, which tries to anticipate the market tendencies. In the normal operating

mode, the tolerance bands ±κ serve to reduce the number of false alarms and wrong

detections; in the inverted mode, they increase the number of possible tradings. The

risk of this strategy is well described by what happens in the out-of-sample context,

where the gain performance becomes negative. However, this may be a consequence

of the excessive length of the forecasting horizon and/or of the time-variability of

the coefficients λ, κ. The strategy of updating the coefficient estimates as new data

become available may reduce the negative side effects.

4.4. Simulation Study

In order to evaluate in depth the methods described so far, it is necessary to perform

simulations experiments. We consider an AR(1) model with parameter φt=1+.01
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sin(t/40), which wanders in the interval [.99, 1.01], with Y0=10 and et ∼ IN(0, 1)

Gaussian. A typical realization of Yt is provided in Figure 1. We perform m=1000

replications of length T=1000, and we apply TVUR, Student, Shewhart and EWMA

methods to sub-samples of size T1 = T2 = 500. The Student method is based on

the statistic Ŝt of Section 2.4, and replaces U, L limits in (2.5) with ±κ, to be

selected with (3.3). Its advantage, with respect to the estimator φ̂t, is the greater

smoothness of Ŝt, which could reduce false alarms. Mean values of estimates are

reported in Table 2; they show the superiority of the first two methods, which have

greater out-of-sample gains and a smaller number of trading cycles n. We have also

applied inverted decision rules to TVUR and Shewhart, but their in-sample gains

are inferior to those in Table 2, and out-of-sample gains are negative.

Table 2. Results of a simulation experiment with an AR(1) model with sinusoidal

unit-root (e.g., Figure 1). The entries are mean values over m=1000 replications;

their legend is given in Table 1, but Gin,out are computed on T1,2=500 observations.

Method λ̄ κ̄ Ḡin n̄ Ḡout

Student (2.5) .741 .571 29.2 30.0 13.2

TVUR (3.2) .778 .003 28.6 35.6 12.9

Shewhart .812 1.46 27.7 59.2 3.6

EWMA (4.4) .795 1.26 29.0 46.0 2.9

5. CONCLUSIONS

In this paper we have developed methods of turning point detection and trading

strategies for financial time series. The original proposal is to monitor the path

of recursively estimated AR roots on the unit circle. The second proposal is to

select the smoothing coefficients λ, κ with a data driven approach based on gain

maximization. Numerical results, on real and simulated data, have shown that

TVP approach outperforms methods based on prediction errors. The reason is that

the relationship between prediction errors and turning points is not causal, because
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significant errors may also be generated by outliers or heteroskedasticity.

The proposed methodology is flexible and is open to all changes which concern

signal statistics and decision rules. For example, one may use any unit-root test

statistic (as St) in place of the root estimate φ̂t; or one may invert the decision

rules in various way, etc.. However, open issues are still present in the selection and

updating of the design coefficients λ, κ, η. In on-line trading, where the operating

horizon is one-step-ahead, those coefficients should be re-estimated for each new

observation. Unfortunately, there are not recursive algorithms for this updating,

and numerical optimization (3.3) must be carried out for each period t.

Topics for further research also deal with the stability over time of the selected

coefficients, and, therefore, with the optimal design of the in-sample size T1. Despite

the fact that our methodology is completely adaptive, in situations of high volatility

it is sensible to use only the most recent data. This seems, indeed, the main lesson

from the recent crisis in 2008.
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