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Abstract. Intensity functions describe the spatial distribution of the occur-

rences of point processes and are useful for risk assessment. This paper deals with

robust nonparametric estimation of the intensity function of space-time data as

earthquakes. The basic approach consists of smoothing the frequency histograms

with the local polynomial regression (LPR) estimator. This method enables auto-

matic boundary corrections and its jump-preserving ability can be improved with

robustness. A robust local smoother is derived from the weighted-average approach

to M-estimation and its bandwidths are selected with robust cross-validation (RCV).

Further, a robust recursive algorithm is developed for sequential processing of the

data binned in time. An extensive application to the Northern California earthquake

catalog in the area of San Francisco illustrates the method and proves its validity.
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1. Introduction

A space-time point process is a sequence of random variables, whose realizations

provide the spatial location and the occurrence time of the events. Typical examples

are represented by earthquakes, but also urban crimes, birth-death of firms and

epidemic phenomena belongs to this category (see Daley and Vere-Jones, 2003).

Unlike continuous processes, which are representable on regular lattices, the main

features of a point process are the coordinates of the events. Forecasting where

and when a future event will occur is the final target in many fields of research.

The statistical analysis of a point process is mainly concerned with the estimation

of its intensity function. This is related to the conditional density and provides

the frequency with which events are expected to occur in the neighbor of any point.

This is useful for building maps of diffusion, contamination and risk.

Nonparametric estimation of intensity functions is commonly used when the

mathematical structure of the process is unknown. In particular, the entire method-

ology of kernel density estimation (KDE) can be applied in multivariate form. This

approach has been pursued in seismology by several authors: the seminal paper by

Vere-Jones (1992) compared parametric and nonparametric approaches; the books

by Bailey and Gatrell (1995) and Simonoff (1996) contains many numerical appli-

cations. More recently, Choi and Hall (1999, 2000) have included time in kernel

smoothers, Stock and Smith (2002 a,b) have applied adaptive estimation, and Gril-

lenzoni (2005) has developed sequential methods.

In the real world, intensity functions may not be completely smooth and are

characterized by the presence of discontinuities in the form of edges and jumps.

These features usually occur at the borders, as a consequence of physical and insti-

tutional barriers, but may also be produced by the dynamics of the process itself. As

regards seismology and the distribution of earthquakes, typical examples are repre-

sented by tectonic faults and shocks after quiescent times. For social processes, they

are represented by urban morphology and political changes. In any event, when

edges are present in the intensity function, the simple kernel method tends to blur

them and provides oversmoothed estimates.

1



An alternative approach to kernel density estimation consists of fitting the em-

pirical histograms with a nonparametric smoother and then normalizing the area

under the resulting surface (e.g. Fan and Gijbels, 1996 p.50). The local polyno-

mial regression (LPR) has automatic boundary correction properties (see Cheng et

al., 1997) and can alleviate the problem at the borders. This approach has been

extensively applied to univariate density functions in survival analysis, randomized

experiments, effect treatment studies where censoring and grouping data are fre-

quent (e.g. Bouezmarni and Scaillet, 2005).

However, to solve the problem of edge effects in a systematic manner, one should

use robust (M-type) smoothers. These estimators have been successfully applied

as edge-preserving filters to denoise digital images (e.g. Chu et al. 1998, Rue

et al. 2002, Hillebrand and Müller, 2006). Common smoothers reduce the noise

by local averaging the pixel luminance; however, this also blur the edges which

separate homogeneous zones. Robust filters reduce this drawback since the score

components which control outliers behave like threshold functions on the edges. As

an extention, they could be applicable to smooth point data and their histograms,

although important algorithmic adjustments are necessary.

In this paper we derive a robust LPR smoother based on the weighted-average

form of M-estimates (see Hampel et al., 1986 p.115). Using this approach to robust-

ness seems natural for nonparametric smoothers because they are usually expressed

as weighted means. The resulting algorithm utilizes kernel functions in place of the

usual score functions, and this makes its structure totally nonparametric. Subse-

quently, the problem of bandwidth design is faced from the point of view of robust

cross-validation (RCV, see Wang and Scott, 1994). This approach enables optimal

selection of the coefficients which tune local adaptation (e.g. Leung, 2005); instead,

for those which tune robustness, heuristic solutions are necessary. Finally, a re-

cursive version of the M-smoother is applied to the estimation of the space-time

intensity function of the earthquake data of San Francisco. Empirical results on real

and simulated data supports the validity of the proposed methods.
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2. Robust Regression and Density Estimation

Seismic data can be seen as a realization of a marked space-time point process.

This is defined as a sequence of multivariate random variables {(xk, yk, zk), tk;mk}
ordered by time (e.g. Daley and Vere-Jones, 2003). In particular, k = 1, 2 . . .N is the

index of the sequence, (x, y, z) are spatial coordinates (longitude, latitude, depth),

t is time and m is the magnitude (mark) of the events. The probabilistic properties

of the point process are entirely described by its joint distribution F [(x, y, z), t;m];

the intensity function is defined in conditional form as f [(x, y, z), τ |ℑt], where τ ≤ t

and ℑt is the set of information (history) up to time t. More specifically, if #(·)
counts the number of events in a neighbor of the point p = [(x, y, z), τ ]′, then the

conditional intensity f(·) is defined from the equation

P
[

#( p,p + dp) > 0
∣

∣

∣ℑt

]

= f
(

p
∣

∣

∣ℑt

)

Dp + o
(

Dp
)

where ℑt = {pk : τk ≤ t} and Dp = dx dy dz dτ (see Daley and Vere-Jones, 2003

Chap. 13). The intensity function f(·) provides the rate of occurrence at the point

p given the information up to time t; the process is stationary if it is invariant under

translations in time and space.

Apart from theoretical definitions and parametric modelings (e.g. Zhuang et al.,

2002), the estimation of the conditional intensity on real data is usually performed

with nonparametric methods. Omitting the depth coordinate z and assuming multi-

plicative kernels, Vere-Jones (1992), Bailey and Gatrell (1995), Choi and Hall (1999),

Stock and Smith (2002) have focused on the kernel density

f̂N (x, y, t) =
1

Nκ1κ2κ3

N
∑

k=1

K1

(

xk − x

κ1

)

K2

(

yk − y

κ2

)

K3

(

tk − t

κ3

)

where Ki , i = 1, 2, 3 are kernel functions; κi > 0 are their bandwidths; (xk, yk, tk)

are observations; (x, y, t) are variables and N is the sample size.

The above estimator treats the time dimension as a spatial axis, in the sense

that it moves on it in any direction, and the estimates at any instant t also include

future events. However, this contrasts with the unreversible nature of time and/or

with the conditional nature of the intensity. To respect these features, one can
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consider a sequential implementation and weighting observations with a one-sided

exponential sequence tuned by a discounting factor µ ∈ (0, 1)

f̂K(x, y|t) =
(

κ1κ2

∑

{ k : tk ≤ t }

µt−tk

)−1
∑

{ k : tk ≤ t }

µt−tk K1

(

xk − x

κ1

)

K2

(

yk − y

κ2

)

(1)

An interesting feature is that when the ages tk are binned in a discrete sequence, the

recursive version of (1) becomes f̂(x, y|t) = µ f̂(x, y|t− 1) + (1 − µ) d̂t(x, y), where

d̂t(·) is the instantaneous kernel density (see Grillenzoni, 2005 p.74).

Robust Estimation. In this paper, we develop robust versions of the adaptive

estimator (1). The reason is that robustness has the advantage both to resist outly-

ing observations and to preserve jumps and edges. For parametric densities, jumps

usually arise at the borders (as in the exponential and uniform cases), but in a

nonparametric framework discontinuities may be present everywhere. In particular,

for point processes related to urban crimes (e.g. Levine, 2007), breaks usually oc-

cur both in space and time as a consequence of physical barriers or social changes.

In any case, developing robust solutions for kernel densities is not simple since the

definition of residuals and prediction errors is not direct.

Following Fan and Gijbels (1996, p.50), an alternative approach to kernel den-

sity estimation consists of fitting the empirical frequencies with a nonparametric

smoother. For a space-time point process, this requires building a multivariate his-

togram by binning data in a suitable 3D grid. To simplify the exposition, we first

consider sequential 2D histograms; given values of t ≥ t1 and a regular grid of points

xi, i = 1, 2 . . . n1 and yj, j = 1, 2 . . . n2, we define the frequencies

fij|t =
∑

{ k : ( xi−1 < xk ≤ xi )∩ ( yj−1 < yk ≤ yj ) | ( tk ≤ t ) }

mk

m̄t

where {xk, yk, tk,mk} are the data values. Notice that each event is weighted by its

relative mark, where mk is the observed magnitude and m̄t is the mean computed

on the data available up to time t. Adaptation in time can also be achieved by

discarding oldest observations with a moving window (t−T < tk ≤ t ]. On the basis

of the frequencies, we can define the nonparametric intensity model

fij|t = f(ẋi, ẏj|t) + εij , εij ∼ IN(0, σ2
ε) ,

i = 1, 2 . . . n1

j = 1, 2 . . . n2

(2)
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where (ẋi, ẏj) are the central points of the square bins of the grid. In this context,

robust density estimators can just be obtained by applying kernel M-type smoothers

to (2). Such methods were introduced by Härdle and Gasser (1984) and were ex-

tended to local linear regression (LLR) by Fan et al. (1994). Their main field of

application was regression models contaminated by outliers.

Bivariate M-smoothers have been proved effective to preserve edges in digital

images denoising (see Chu et al.; 1998, Rue et al., 2002; Hillebrand and Müller,

2006); this approach can potentially be applied to smooth point data and their

histograms. The robust (M-type) local polynomial regression (LPR) estimator of

the intensity model (2) can be defined as

f̂M(x, y|t) = arg min
β0

{

n1
∑

i=1

n2
∑

j=1

K1

(

ẋi − x

κ1

)

K2

(

ẏj − y

κ2

)

×

× ρ
[

fij|t − β0 −
p
∑

k=0

p
∑

h=0

βkh (ẋi − x)k (ẏj − y)h
]

}

(3)

where the indexes k, h satisfy the constraint (k+h) = p. The components of (3) are

defined as follows: ρ[ · ] is a convex function that controls the influence of anomalous

data; β0 corresponds to the function f(·); βkh are auxiliary coefficients that improve

stability at the borders; finally, p ≥ 0 is the degree of the polynomial expansion of

(2). For p = 0, 1 we have robust versions of the simple kernel smoother and of the

local linear regression, respectively; for p = 1 the score component of (3) becomes

ρ[ fij|t − β0 − β10(ẋi − x) − β01(ẏj − y) ].

Edge-preserving is related to outlier resistance by the fact that observations

near or on jump-points typically yield anomalous residuals. It follows that these

data tend to be censored by the score components of robust smoothers. However,

such scores behave as threshold functions, so that discontinuities in the estimated

regression surface are finally generated. More generally, since M-smoothers weight

observations also in the direction of the dependent variable, their local and adaptive

properties are better than those of nonrobust estimators. On the other hand, outlier-

resistance and jump-preserving need different types of loss functions.

The choice of the ρ-function in (3) concerns issues of robust (parametric) sta-

tistics. Huber (1981) states that ρ(·) should be unbounded and must achieve its
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maximum value asymptotically, because outlying observations may contain useful

information. On the contrary, Hampel et al. (1986) claim that it should be strictly

bounded, because outliers are usually extraneous to the models. These two ap-

proaches have opposite consequences on the properties of convergence and adaptiv-

ity of the estimates, and, in nonparametric smoothing, they were applied to outlier

removing and edge-preserving respectively.

Following Huber and Hampel philosophies, the most common unbounded (a,b)

and bounded (c,d) loss functions are

a) ρa(ε) =
∣

∣

∣ ε
∣

∣

∣

b) ρb(ε) =







ε2/2 , |ε| ≤ λ

λ |ε| − λ2/2 , |ε| > λ
(4)

c) ρc(ε) =







ε2/2 , |ε| ≤ λ

λ2/2 , |ε| > λ

d) ρd(ε) = −L
(

ε/λ)/λ

where L(·) is a unimodal kernel function and λ > 0 is a tuning constant. This

coefficient is usually designed according to the rate of outlier contamination and,

under the assumption of Gaussian disturbances, one can set λ = 2 σε. The function

(4,a) is the most simple and was stressed by Wang and Scott (1994); (4,b) was defi-

Figure 1. Display of the score functions in (4), with L(·) Gaussian and λ = 1.
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ned by Huber and has monotone derivative: ψ(ε) = ∂ ρ(ε)/∂ ε. Finally, (4,c) cor-

responds to the trimmed method and (4,d) is a smoothed solution which provides

redescending ψ-functions (e.g. Hampel et al., 1986). Graphical behavior of these

functions, and of their transformations, is shown in Figure 1.

Letting β = [ β0, β10, β01 . . . β0p ]′, the vector of parameters to be estimated in

(3) at every point (x, y), the minimization typically proceeds by nonlinear methods,

such as Steepest-Descent. At the k-th iteration one has the M-algorithm

β̂
(k+1)

M (x, y|t) = β̂
(k)

M (x, y|t) +
n1
∑

i=1

n2
∑

j=1

Kij(x, y) wij ψ
[

fij|t − w′
ij β̂

(k)

M (x, y|t)
]

(5)

where Kij(x, y) are the kernel weights (say), ψ(·) = ρ′(·) and the vector wij =

[ 1, (ẋi −x), (ẏj − y), (ẋi −x)2 . . . (ẏj − y)p ]′. The initial value of (5) can be obtained

from linear smoothers, as β̂
(0)

M = β̂LPR. In general, the convergence of the algorithm

(5) to the global optimal solution is guaranteed only if ψ(·) is monotone (namely, if

the underlying loss functions are (4;a,b)); in the other cases, multiple local solutions

are possible. On the other hand, redescending ψ-functions have better adaptive

properties in the presence of jumps (see Rue et al., 2002).

A gradient-free solution for (3), which may avoid the problems of (5), can be

derived from the weighted-average form of M-estimates (see Hampel et al., 1986

p.115). This arises by applying the Tukey transformation ω(ε) = ψ(ε)/ε to the

rescaled normal equations of (3), given by

n1
∑

i=1

n2
∑

j=1

Kij(x, y)ψ
[

( fij|t − w′
ij β)/σε

]

wij = 0

n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω
[

( fij|t − w′
ij β)/σε

]

( fij|t − w′
ij β) wij = 0

n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω(εij/σε) wij fij|t =
n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω(εij/σε) wij w′
ij β (6)

Notice from Figure 1, that the ω-functions have the same nature as kernels; in

particular, in the case (4,d) one has ω(·) = +L(·). Thus, defining

Wij(x, y; ε|t) =
1

κ1κ2 λ
K1

(

ẋi − x

κ1

)

K2

(

ẏj − y

κ2

)

L

(

fij|t − w′
ij β

λ

)

(7)

and solving the system (6) for β, in iterative form, one can obtain the estimator
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β̂
(k+1)

M (x, y|t) =

[

n1
∑

i=1

n2
∑

j=1

Wij

(

x, y; ε̂
(k)
ij |t

)

wij w′
ij

]−1 n1
∑

i=1

n2
∑

j=1

Wij

(

x, y; ε̂
(k)
ij |t

)

wij fij|t

(8)

where ε̂
(k)
ij (x, y|t) =

[

fij|t − w′
ij β̂

(k)

M (x, y|t)
]

is the ij-th residual evaluated at (x, y).

Since (8) resembles the LPR smoother, it can be termed quasi-linear.

The estimate of the intensity function f(x, y|t) is provided by the first element

of the vector (8). In the Appendix we directly derive its expression for the simpler

case p = 0; by using the notation Lλ(·) = L(·/λ)/λ, it is given by

f̂
(k+1)
M,0 (x, y|t) =

∑n1

i=1

∑n2

j=1 Kκ1
(ẋi − x)Kκ2

(ẏj − y)Lλ

[

fij|t − f̂
(k)
M,0(x, y|t)

]

fij|t
∑n1

i=1

∑n2

j=1 Kκ1
(ẋi − x)Kκ2

(ẏj − y)Lλ

[

fij|t − f̂
(k)
M,0(x, y|t)

] (9)

This looks like a Nadaraya-Watson smoother, but is iterative and also weights ob-

servations in the direction of the dependent variable. With respect to common

nonlinear algorithms, the quasi-linear methods (8)-(9) are much faster and avoid

the use of ψ-functions; hence, they can reduce the risk of convergence to local min-

ima. Another important feature of (8)-(9) is that they are easily implementable in

recursive form; this point will be developed in the next section.

The robust mechanism underlying (8) has some connection with those devel-

oped by Cleveland (1979), Fan et al. (1994) and Assaid et al. (2000). These au-

thors focused on the Huber’s function ψH(ε) = min[λ,max(−λ, ε)], and distinguish

themselves mainly for the weights Wij(·). In Cleveland (1979) the first iteration

is as follows: the LPR residuals ε̂i are rescaled by means of a robust estimate of

σε; next they are transformed into weights by means of ψH and are multiplied by

tricube weights Ki based on a nearest-neighbor bandwidth. Similarly, Fan et al.

(1994) use the weights Ki ψH(ε̂∗i )/ε̂
∗
i , where the star denotes rescaling, and Assaid et

al. (2000) focused on Ki Gaussian designed with a modified cross-validation crite-

rion. Instead, in our approach, the algorithms (8)-(9) have been obtained with the

weighted-average form of M-estimates discussed in Hampel et al. (1986, p.115). As

a result, their general feature is weighting residuals with kernel functions instead of

the usual scores (see Figure 1 to appreciate the difference).
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Applications. We now illustrate the methodology we have discussed on a real

case-study concerning the earthquakes of the San Francisco bay. The data-set was

downloaded from the Internet site of Northern California Earthquake Data Center,

and covers a zone with longitude −122.7 ≤ x ≤ −122.1, latitude 37.4 ≤ y ≤ 38.2,

and time span Jan 1968≤ t ≤ Dec 2005 (the starting time was that available in the

data-base). The total number of events is N = 4369 and their features are displayed

in Figure 2. Panels (a,d) show that spatial pattern of events is not random and

follows two nearly parallel stems of the St Andrea fault. Panel (c) shows that the

temporal distribution is nearly uniform because the time interval is small and no

outlying event occured; finally, Panel (b) shows that there is no linear relationship

between magnitude of the events and their depth.

Figure 2. Main features of the Northern California earthquake catalog in

the San Francisco bay in the period Jan 1968-Dec 2005: (a) Spatial distribution of

epicenters; (b) Scatterplot between depth and magnitude; (c) Temporal distributions

of events; (d) Spatial distribution of earthquakes with magnitude greater than 2.5.

Data were downloaded from the Internet site http://www.ncdec.org.
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To test the jump-preserving ability of the M-smoother (8), we have considered

the density estimation of the data in Figure 2(b) (which regards magnitude and

depth), by dropping the part of the histogram fij below the modal values of m, z

(see Figure 3(a)). The size of the squared bins of the histogram was established

on the basis of rules-of-thumb present in the literature (such as 2 σ̂x,y/
√
N), and

led to a grid 40 × 60. The performance of smoothers (8)-(9) crucially depends on

the values of the bandwidths κ1,2, λ. A popular selection strategy consists of using

quadratic cross-validation (CV), or its robust version based on absolute prediction

errors (see Wang and Scott, 1994). We shall discuss in detail this problem in the

next section; by now, we only state that constrained CV provided (κ1=κ2=λ)=1.9.

Resulting density estimates are displayed in Figure 3; where Panel (a) shows the

local linear regression (LLR, p=1) on all data, Panels (b,c,d) show kernel regression

Figure 3. Regression estimates of the density of data in Figure 2(b): (a) LLR

estimate on complete data; (b) Kernel regression on partial data; (c) LLR estimate

on partial data; (d,e) Robust LLR estimate on partial data. All smoothers were

designed with Gaussian kernels and the common bandwidth 1.9.

(a) − Linear (all data)

M
ag

ni
tu

de

0 5 10 15
0

1

2

3

4
(b) − Constant (p=0)

0 5 10 15
0

1

2

3

4

(c) − Linear (p=1)

Depth in Km

M
ag

ni
tu

de

0 5 10 15
0

1

2

3

4
(d) − Robust (p=1)

Depth in Km
0 5 10 15

0

1

2

3

4

10



0

5

10

15

0

1

2

3

4
0

0.5

1

1.5

2

2.5

3

x 10
−3

Depth in km

(e) − Robust LLR Estimate

Magnitude

(i.e. p=0), LLR and robust LLR estimates on partial data. Clearly, the robust

method is the best one to preserve the introduced jump (a 3D-view is provided in

Panel (e)), although it has greater variability in smooth regions.

In addition to edge-preserving, we can also show the ability of robust smoothers

to cluster spatial data. We consider the data-set of the epidemiologist John Snow,

who studied the 1854 cholera outbreak in the Soho zone of London. In that time,

causes of the infection were unknown; however, by mapping the death occurrences,

he discovered that the epidemic originated from few public water-pumps. Point pat-

tern is displayed in Figure 4(a), and the other panels show nonparametric estimates:

kernel density, LLR, robust LLR. Smoothing coefficients were selected with mixed

criteria and are described in the caption of Figure 4. The most relevant feature is

the capability of the M-smoother to cluster data in few groups, whereas the other

methods provide dispersive information.

3. Bandwidth Selection and Recursive Estimation

Bandwidth design is a fundamental problem for nonparametric estimators. The

ideal approach is plug-in, where the theoretical MSE of the smoother is analyzed, the

expression of the optimal bandwidth is derived and the unknown quantities (such
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Figure 4. Smoothing epidemic data of John Snow (www.ph.ucla.edu/epi/

snow.html): (a) Distribution of deaths, N=578; (b) Kernel density with κ̂1,2 =

σ̂x,y/N
1/5 = 0.52; (c) Local linear regression with κ̂CV = 0.78; (d) Robust LLR with

λ̂ = 2 σ̂M = 0.11. All smoothers used Gaussian kernels and a grid 55×50 .
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as the derivatives f ′′) are replaced by pilot estimates. However, this approach is

analytically and computationally demanding and, in the case of discontinuous func-

tions and complex coefficients (such as λ), it cannot be applied. Under regularity

conditions, the CV method provides asymptotically optimal results (e.g. Härdle et

al., 2002 p.114), and is always implementable.

Cross-Validation. Following Wang and Scott (1994) and Leung et al. (1993,

2005) outliers and jumps produce significant bias in the selected bandwidths; to

reduce their influence, one can use robust cross-validation (RCV). For the model (2)

and the estimator (9), it consists of minimizing

Pn(κ1,2, λ) =
1

n1 n2

n1
∑

i=1

n2
∑

j=1

̺
[

fij|t − f̂
(k)
M−ij(ẋi, ẏj|t)

]

(10)

where ̺[ · ] may be one of the ρ-functions in (4) and f̂
(k)
M−ij(·) are M-estimates obtained
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by omitting the ij-th frequency. The criterion (10) leads to the optimal selection of

the bandwidths which regard the local adaptation. In fact, Leung (2005) has shown

that κ̂RCV converges in probability to κopt (which minimizes the integrated MSE),

and is asymptotically independent of ̺[·]. This result was established for continuous

models with outliers and for M-smoothers of Huber type, but it can be extended to

more complex situations.

Two remarks are now necessary:

(i) The preferred ̺-function in (10) is the absolute criterion (4,a), since it does not

involve additional robustness coefficients, say λ̺. In the other loss functions

(4;b-d), this coefficient would create a circular problem with respect to the

estimation of the bandwidth λ with (10). In any event, Wang and Scott

(1994) and Leung (2005) have shown that the function ̺ = | · | has a sufficient

degree of robustness for the selection of κ.

(ii) In the literature not much has been said about the selection of λ. In M-

smoothers with Huber ψ-function, that coefficient is usually established a-

priori (e.g. Leung, 2005), and the authors who tried to estimate it with

quadratic CV obtained λ̂CV → ∞ (see Hall and Jones, 1990 p.1717). In this

case, it is necessary to constrain its value to κ, or to adopt the heuristic design

λ = 2 σε. Under Gaussianity, this solution enables 95% asymptotic relative

efficiency (ARE) with respect to nonrobust smoothers.

Figure 5 shows the path of the absolute RCV-function applied to the partial data

in Figure 3(a). With respect to the first bandwidth, it has a well-defined minimum

at κ̂ = 2, whereas for the other it confirms λ̂RCV → ∞. This was explained by Hall

and Jones (1990, p.1717) with the ”preference of M-smoothers for the mean fit”,

but is due to the fact that λ <∞ reduces the efficiency (increases the variability) of

M-estimates in smooth regions. Constrained selection provided (κ̂ = λ̂) = 1.9, and

the median absolute deviation (MAD) of the residuals of Figure 3(c) gave σ̂M=0.75

(this yields a slightly smaller value of λ = 2σε). The results in Figure 3(d) were

generated with these values.
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Figure 5. Path of CV functions for the coefficients κ, λ of the smoother (8)

(with p=1 and K,L Gaussian), applied to the partial data in Figure 3(a): (a,c,d)

Absolute criterion (CV1); (b) Quadratic criterion (CV2).
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We now present the estimates of the intensity function (2) obtained on the whole

data-set: f(x, y|tN). This exercise is common practice in seismology (e.g. Stock and

Smith, 2002), where the time-dimension is treated separately. The area of study

was partitioned in a grid of size 80 × 60 and the frequencies fij were computed by

weighting the events with their relative magnitude. We compare the local linear

regression with its robust version; quadratic and absolute CV provide

CV2 : LLR(κ̂1 = 1.43, κ̂2 = 1.21), σ̂ε = 7.3 ; M−LLR(κ̂1,2 = λ̂ = 1.32)

CV1 : LLR(κ̂1 = 1.19, κ̂2 = 0.92), σ̂M = 2.1; M−LLR(κ̂1,2 = λ̂ = 0.95) (11)

in the linear case, the bandwidths κ̂1,2 converge toward similar values, but in the

robust one we still have λ̂ → ∞. The constrained estimation (λ = κ) in equation

(11) gives admissible values, even compared to the heuristic solution λ = 2σε. With

these bandwidths, we have generated the intensity functions in Figure 6; as for

Figure 4, the robust method gives more detailed spatial information.
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Figure 6. Intensity function of earthquakes on the entire period: (a) LLR estimate;

(b) Robust LLR. All smoothers used Gaussian kernels and bandwidths in (11).
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Recursive Estimation. So far we have considered M-smoothers which are not

weighted in the time-dimension, or that just treat it sequentially, as (3) and (8).

In these estimators, when the variable t changes, the entire past information must

be reprocessed. If observations would be equally spaced, as in standard time-series,

then a recursive implementation would be possible. The condition t-discrete can

be achieved by binning data in weekly, monthly or yearly series. Thus, let t =

1, 2, . . . n3, and define the 3D-matrix F = { fijt} of frequencies

fijt =
∑

{ k : ( t−1 < tk ≤ t )∩ ( xi−1 < xk ≤xi )∩ ( yj−1 < yk ≤ yj ) }

mk

m̄N

In this context, the estimator (3) can be easily weighted in time as (1)

f̂M(x, y, t) = arg min
β0

{

t
∑

h=1

n1
∑

i=1

n2
∑

j=1

µt−hK1

(

ẋi − x

κ1

)

K2

(

ẏj − y

κ2

)

×

× ρ
[

fijk − β0 − β1(ẋi − x) − β2(ẏj − y) − β3(t− h)
]

}

where µ ∈ (0, 1] and we have assumed p = 1. Also, the corresponding quasi-linear

estimator (8) can be obtained by multiplying the weights (7) by µt−h.
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Now, the recursive version of the robust smoother can be derived by equating

number of iterations and number of processed layers, i.e. k = t. Under this condi-

tion, the denominator (R) and the numerator (s) of (8) can be updated recursively,

and the estimator is derived accordingly (see Grillenzoni, 2000)

ε̂ij(x, y|t) = fijt − w′
ij β̂M(x, y|t− 1) (12)

R(x, y|t) = µ · R(x, y|t− 1) +
n1
∑

i=1

n2
∑

j=1

Wij

(

x, y; ε̂ij|t
)

wij w′
ij

s(x, y|t) = µ · s(x, y|t− 1) +
n1
∑

i=1

n2
∑

j=1

Wij

(

x, y; ε̂ij|t
)

wij fijt

β̂M(x, y|t) = R(x, y|t)−1s(x, y|t) , t = 2, 3 . . . n3 (13)

where (12) is the one-step-ahead prediction error and the first element of (13) pro-

vides the intensity function. In this setting, it is clear the role of µ < 1 to discount

past information and to adapt the smoother to changing situations. Time-evolution

may also be related to the intrinsic nonlinearity of the point process.

The smoothing coefficients of (13), can be designed on the basis of the predic-

tion errors; in particular, a robust CV criterion is given by the sum of | ε̂ij(x, y|t)|.
We have applied this method to yearly seismic data in the period 1968-2005, and

distributed on a spatial grid of size 40 × 30. The predictive CV selection has pro-

vided µ̂→ 0, which means that the process has no memory, at least on yearly data.

Increasing the temporal aggregation would increase the auto-correlation inside F ,

but the resulting estimates would have limited predictive value. In any case, the

path of the conditional CV function

Pn(µ|λ̂, κ̂) =
38
∑

t=2

40
∑

i=1

30
∑

j=1

∣

∣

∣ ε̂ij(ẋi, ẏj|t)
∣

∣

∣

given the bandwidths in (11), becomes nearly stable for µ ≤ 0.5.

Figure 7 displays recursive estimates (13) generated with µ = 0.5 in the years

t =1975, 1985, 1995, 2005. They show a significant variability and differences with

respect to Figure 6, which provides the (static) total value in the period. These

differences are yielded by the low value of µ, by the 10-year lag between the displayed

frames and by the intrinsic randomness of seismic phenomena on the short period
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(geologically speaking). However, the proposed method provides updated maps of

risk which can be useful for point processes which have fast dynamics and must

be monitored in real-time. Whatever the application is, the user must select the

degree of time-aggregation and the value of the discounting factor with particular

care, since they determine the goodness of the one-step-ahead forecast f̂(x, y|t).

Figure 7. Robust recursive estimates of the conditional intensity of earth-

quakes in the years: (a) 1975; (b) 1985; (c) 1995; (d) 2005. The algorithm (13) was

implemented with p = 1, Gaussian kernels, µ = 0.5 and the bandwidths (11).
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Simulation. Let us conclude with a small simulation experiment on mobile

discontinuous functions. We generate a space-time point process whose basic den-

sities are uniform on the unit interval. Specifically, given independent realizations
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of ti ∼ U(0, 1) and (ui, vi) ∼ U2(0, 1) with i = 1 . . . 1500; the time variable is sorted

as ti ≤ ti+1, and the spatial coordinates are generated as (xi, yi) = (ui, vi) + ti. The

intensity function of the process looks like a bivariate uniform density that moves in

the North-East direction. It may represent a physical or a chemical process and a

random realization is displayed in Figure 8(a). The experiment consists of estimat-

ing the bivariate uniform density at the points t = 0.1, 0.2 . . . 1, with the recursive

estimator (13). To this purpose, data were binned in a 50 × 50 × 10 regular grid.

Using cross-validation and rules of thumb, the smoothing coefficients were selected

as κ1,2 = λ = 0.05 and µ = 0.5. The results are displayed in Figure 8(b-c) for the

instants t = 0.3, 0.6, 0.9. Since uniform densities are difficult to estimate even in the

static case, the performance of (13) is sufficiently good.

Figure 8. Robust recursive estimation of a moving uniform density. (a) Data

sample; Estimates at: (b) t=0.3; (c) t=0.6; (d) t=0.9. The algorithm (13) was

implemented with p = 1, Gaussian kernels and coefficients µ = 0.5, κ = λ=0.05.
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4. Conclusions

This article has discussed nonparametric estimation of the conditional intensity

of earthquake data. It provides the expected rate of occurrence at any point of the

space, given the set of information available up to a given instant. The strategy of

estimation consists of smoothing the observed frequency histogram with the method

of local polynomial regression. This approach enables automatic boundary correc-

tions and its jump-preserving ability can be improved with robustness. An iterative

algorithm is derived from the weighted-average form of M-estimates and its smooth-

ing coefficients are designed with mixed criteria. Finally, a recursive algorithm is

proposed for sequential processing of the data binned in time.

A delicate aspect of the method is represented by the selection of the smoothing

coefficients. For robust-space-time smoothers we have three kinds of coefficients: the

bandwidths κ, the robustness parameter λ and the discounting factor µ. We have

designed them with mixed strategies based on cross-validation, relative efficiency

and prediction errors criteria, which are spread in the literature. In general, these

require the optimization of loss functions, which are difficult to treat even when they

are convex and differentiable. An alternative selection strategy for κ, λ, µ could be

obtained from the SiZer approach of Chaudhuri and Marron (1999, 2000). This

explores the behavior of kernel estimates in the space of smoothing coefficients and

searches for significant features through curve derivatives. The method is appealing,

but is difficult to apply to multivariate nonlinear smoothers.

Wide part of the paper has been devoted to an application to Northern Cali-

fornia earthquake catalog in the area of San Francisco. We have shown that robust

smoothers have good ability to estimate discontinuous density functions. Further,

with respect to linear kernel methods they have greater sensitivity to capture spatial

details and edges. Also, the proposed method has worked well at the recursive level,

providing maps of seismic risk which evolve over time. This solution is useful in

situations (such as monitoring air pollution) which evolve fastly and need real-time

processing of data.
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Appendix: derivation of (9)

For the robust smoother with p=0, the loss function corresponding to (3) is

Rn(f) =
∑

i

∑

j Kij(x, y) ρ
(

fij|t − f
)

; and the normal equation corresponding to

(6) becomes R′
n(f) =

∑

i

∑

j Kij(x, y)ψ
(

fij|t − f
)

= 0. Now, inserting the Tukey

transformation ω(ε) = ψ(ε)/ε in the normal equation, we have

n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω(fij|t − f) fij|t =
n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω(fij|t − f) f

and solving for f , in iterative form, provides the robust smoother

f̂
(k+1)
M (x, y) =

[

n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω
(

fij|t − f̂
(k)
M (x, y)

)

]−1

×
n1
∑

i=1

n2
∑

j=1

Kij(x, y)ω
(

fij|t − f̂
(k)
M (x, y)

)

fij|t (14)

Now, in the case of the loss function (4,d), with L(·) Gaussian, one has

ψ
(

fij|t − f
)

=
−1√
2πλ

exp

[

− 1

2

(

fij|t − f

λ

)2
]

−1

λ2

(

fij|t − f
)

that is ω(·) ∝ L(·) (see Figure 1), and the smoother (9) directly follows from (14).
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