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Summary

Nowadays airborne laser scanning is used in many territorial studies, providing point

data which may contain strong discontinuities. Motivated by the need of interpolat-

ing such data and preserving their edges, this paper considers robust nonparamet-

ric smoothers. These estimators, when implemented with bounded loss functions,

have suitable jump-preserving properties. We develop iterative algorithms which are

equivalent to nonlinear M-smoothers, but have the advantage of resembling the lin-

ear Kernel regression. The selection of their coefficients is carried out by combining

cross-validation and robust-tuning techniques. Two real case studies and a simula-

tion experiment confirm the validity of the method; in particular, the performance

in building recognition is excellent.
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1. Introduction

Airborne light detection and ranging (LiDAR) is a relatively new technology

for obtaining earth surface data having high density and high positional accuracy

(e.g. Wang & Tseng, 2004). The system is placed on airmobiles and includes two

measurement instruments: a laser scanner and a global positioning system (GPS).

The laser sends to the ground an infrared signal which comes back to a sensor. The

returning time allows the earth point elevation to be computed, and the reflectance

value gives information on the physical nature of the ground. The GPS provides the

corresponding spatial coordinates (latitude and longitude).

Unlike aerial and satellite images, the recorded data have a punctual nature.

Their density is high because, taking into account flight conditions and sensor char-

acteristics (e.g. scan angle 20 degrees, emission rate 10000 pulses per second), it may

reach one point every 0.5 meters. With respect to optical systems, the fundamental

advantage of LiDAR is that it can work by night, it is insensitive to shadows and

also provides the buildings’ height. On the other hand, observations are subject to

several random effects and the two instruments may mismatch.

Airborne LiDAR data are mostly used in topography, geology and architecture:

1) On a large scale, they are utilized to develop digital elevation models (DEM) of the

earth surface. Nowadays, these models are used in geographical information systems

(GIS) for integrating the conventional cartography. 2) On a medium scale, they are

employed for obtaining hazard maps of zones which may be subject to river floods,

tidal inundations, landslides and other environmental risks. 3) On a small scale,

laser data can be used for the detection and recognition of buildings in urban areas.

Their representation is useful in architectural reliefs, volumetric computations and

enables the construction of 3D city models for computer graphics.

In all of these cases there is need for data-interpolation, especially at the point

3 if the resolution required is less than one meter. Geostatistical smoothers, such as

kriging, triangularizations and splines, have problems in urban areas because they

are not able to preserve the discontinuities which are present on the ground (e.g.

Morgan & Habib, 2002). Generally speaking, there are two major approaches for
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estimating regression surfaces which contain jumps. In the first one, the jump loca-

tions are tentatively identified with change-point tests, then conventional smoothers

are applied in each continuous subregion. In the second, jump-preserving smoothers

are applied overall without taking account of the possible location of discontinuity

points. The last solution is nearly automatic, but involves more bias at the jumps

and lower efficiency in smooth regions.

The first approach was fundamentally used in the one-dimensional design space;

e.g. Hall & Titterington (1992) considered three nearest neighbor estimates and pro-

posed various diagnostics to decide whether the regression function was continuous

at each point. For multi-dimensional design spaces, the second method is preferable

because jump points are difficult to detect and their number may be infinite. In

this context, nonparametric smoothers are the natural estimators in view of their

flexibility and independence of a-priori assumptions (e.g. Härdle, 1991). Moreover,

their robust versions, by treating the observations beyond discontinuities as outliers,

are potentially jump-preserving.

Robust smoothing was mainly developed in the context of the M-estimation

theory of Huber (1981). Generally speaking, there are two major approaches, which

depend on the fact that the underlying loss functions are bounded or unbounded.

Kernel M-type regression with unbounded loss (or monotone score) was considered

by Härdle & Gasser (1984), Hall & Jones (1990) and Wang & Scott (1994). It was

designed to resisting additive outliers and to allow consistency in the case of heavy-

tailed distributions. Its extension to the local polynomial regression (LPR) was

discussed by Tsybakov (1986), Fan et al. (1994) and Welsh (1996). This solution

performs better than the kernel one at the borders.

Bivariate M-smoothers with bounded loss (non-monotone score) are widely em-

ployed in image processing, where they provide denoising filters. In particular,

Chu et al. (1998) used redescending score functions and showed their good edge-

preserving capability. Extension of this framework to the local polynomial regression

was discussed by Rue et al. (2002) and Hwang (2004), and Hillebrand & Müller

(2006) have recently derived the conditions of consistency at the edges. Finally,
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Polzehl & Spokoiny (2000) developed an adaptive method which is intermediate to

the kernel M-estimator and the denoising filter of Saint Mark et al. (1990).

In image processing, M-smoothers exploit the fact that data are available on

regular lattices, which simplifies computation and analysis. Application of these es-

timators to point data involves some structural changes. In fact, interpolation deals

with missing values and spatial coordinates of LiDAR data are entirely stochastic.

By using the weighted average form of M-estimates (e.g. Hampel et al., 1986 p.115),

this paper derives robust pseudolinear smoothers. They have a structure similar

to the linear kernel regression and can be implemented in a sequential way. Their

smoothing coefficients can be selected with mixed cross-validation and robust tuning

techniques, which satisfy relative efficiency requirements.

The plan of the work is as follows: Section 2 introduces the case study and

applies nonrobust smoothers; Section 3 discusses kernel M-type estimators and tests

their performance on the airborne laser data; Section 4 provides further applications

and discusses the statistical properties.

2. Preliminary data analysis

To present the methods in an effective manner, we introduce the case study

here. We consider a subset of the LiDAR data discussed in Wang & Tseng (2004),

concerning the city of Hsinchu (Taiwan) and generated by Leica ALS40 instrument

on April 2002. The measurement has a mean density of 2.3 point per meter and a

declared accuracy of 30 cm; original dataset covers a square area of 0.5 Km2, while

our subset regards a zone of 75×50 m, which contains N=8369 points. For each

point, measurements for the time (t), the latitude (y), the longitude (x), the height

(Z) and the reflectance (w), are recorded; the latter describes the physical nature of

the ground and is useful for classification purposes. In the urban context the main

interest is on building recognition and the reflectance may detect the presence of

objects which are extraneous, such as vehicles and trees. Figure 1(a,b) provides 2D

and 3D representations of spatial coordinates {xi, yi, Zi}. One can note that data
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are very dense and the spatial coordinates form irregular and overlapping stripes

which have variable density. However, only few points are placed on the building

walls and this increases the need for interpolation.
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Figure 1. Spatial representation of LiDAR data; sample size N=8369.

Nonparametric smoothers (e.g. Härdle, 1991) can be very useful to deal with

LiDAR data because they do not assume mathematical models for the underlying

surfaces. Focusing on spatial coordinates and the model Z = g(x, y) + ε, where g(·)

is an unknown function and ε is a noise process, the typical structure of the kernel

(K) regression estimator is given by

ĝK(x, y) =
N
∑

i=1

vi(x, y) Zi (1)

vi(x, y) =
K1

[

(xi − x)/h1

]

K2

[

(yi − y)/h2

]

∑N
i=1 K1

[

(xi − x)/h1

]

K2

[

(yi − y)/h2

]

where (x, y) ∈ < are continuous variables, {xi, yi,Zi} are punctual observations,

K1,2(·) are symmetric densities and 0 < h1,2 <∞ are smoothing coefficients.

Optimal selection of such coefficients can be obtained with the cross-validation

technique, which minimizes the sum of squared prediction errors

QN(h1, h2) =
N
∑

j=1

[

Zj − ĝK−j(xj, yj)
]2

(2)

where ĝK−j(·) are estimates as in (1) obtained by omitting the j-th observation.

Applying this method to the data of Figure 1, under the choice of Gaussian kernels,
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we obtained ĥ1=.047 and ĥ2=1.32. However, these coefficients produce a surface

which tends to follow the ”stripes” of the aircraft (see Figure 1(a)). Instead, by

constraining h1=h2, the method (2) yields ĥ1,2=0.59. With this value we generated

the surface in Figure 2 which has resolution 1 m2 and size 75×50.
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Figure 2. Kernel regression estimate of the data in Figure 1. It is generated

with the algorithm (1) with Gaussian kernels and bandwidth h1 = h2 = 0.6.

Despite their flexibility, classical nonparametric estimators have major problems

when the surfaces present discontinuities. This can be checked in Figure 2 by noting

that building walls are not as sharp as should be expected in the reality, see Figure

1(b). A better visual performance could be obtained with a smaller bandwidth, but

this only slightly improves the situation.

Analysis of the disturbances is an important diagnostic step. Here, one must

distinguish between prediction errors ε̂j = [Zj − ĝK−j(xj, yj) ] (spatial innovations)

and residuals of regression ε̌i = [ Zi − ĝK(xi, yi) ]. While the variance of the first

has a well-defined minimum with respect to the bandwidths, the variance of the

latter converges to zero as h1,2 → 0. A natural estimator for the noise variance is

then given by σ̂2
ε = QN/N , but is sensitive to outliers. A robust alternative can be

obtained from the median (med) absolute deviation (MAD) as

σ̂M = medi

{

| ε̂i − medj(ε̂j)|
}

/.6745 (3)

where .6745 allows consistency in the Gaussian case (Huber, 1981 p.107). Using
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these formulas we obtained σ̂ε=3.24, σ̌ε=2.57, and σ̂M=0.25 which is very different

from the others and reveals presence of non-normality. It is worth noting that this

situation is extraneous to the original series Zi, where both estimators provide a

similar value; namely σ̂Z = 10.5 and σ̂M = 10.8.

Another useful diagnostic tool is the kernel density estimation f̂K(ε). This can

be generated with the heuristic bandwidth σ̂ε/N
1/5=.53 (see Härdle, 1991 p.91),

which is close to the cross-validation estimate of h1,2. Kernel density was computed

both for innovations and residuals and is displayed in Figure 3(a); Panel (b) provides

the normal QQ-plot of residuals. Both graphs diagnose the presence of a marked

non-Gaussianity in the form of heavy tails; these are produced by the large errors

at the building edges. A solution to the poor fitting of the kernel regression (1) can

be achieved by filtering large residuals; indeed, these are the effect and the cause

of the surface oversmoothing at the jumps. This task is typically pursued in robust

estimation (e.g. Huber, 1981), where residuals are controlled by modifying the loss

function.
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Figure 3. Diagnostic analysis for (1): (a) Kernel densities of prediction errors

(solid line) and residuals (dashed line); (b) Normal quantiles plot for residuals.
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3. Kernel M-type smoothers

In this section we discuss robust smoothers by linking Kernel regression and

M-type estimation. This approach was developed by Härdle & Gasser (1984), with

regard to univariate models contaminated by outliers. Subsequently, Hall & Jones

(1990) extended the method to the random design, and Chu et al. (1998) and Rue

et al. (2002) applied it to image processing (i.e. bivariate fixed design).

Assume that the data follow a non-linear model with stochastic regressors

Zi = g(xi, yi) + εi , εi ∼ IID(0, σ2
ε) ; i = 1, 2 . . .N (4)

where g(x, y) = E(Z | x, y) is a discontinuous function, with jumps located at un-

known points, and {εi} is an independent and identically distributed (IID) sequence

with symmetric density f(ε). As an example one could have

g(x, y) = γ(x, y) + δ1 · I1
{

(x, y) : y ≥ [φ(x) + δ2 · I2(x ≥ x0) ]
}

where γ(·) is a continuous function, δ1,2 are jumps and I1,2(·) are indicator functions.

Note that in the above scheme, the discontinuity edge of g(·) follows the relationship

y = φ(x), which also has a jump at the point x0.

The connection between discontinuous models and models with outliers can be

shown by including the jump component of g(·) in the noise component of (4).

Relaxing the IID assumption, it turns out that {εi} have a mixture density of the

type f ∗
ε = f0 · I[ y < ϕ(x)] + fδ · I[ y ≥ ϕ(x)], where f0 is centered on 0 and fδ is

centered on δ. This remark renders robust estimators suitable for the model (4).

3.1 Redescending smoothers

Because the estimator (1) minimizes the functional
∑N

i=1 vi(x, y) (Zi − g)2, its

”robustization” can be achieved by replacing the quadratic loss with a convex func-

tion ρ(·) which is less sensitive to extreme values. Specifically, the kernel M-smoother

is the solution of the locally weighted maximum likelihood type problem

ĝM(x, y) = arg min
g

[

PN(g) =
1

N

N
∑

i=1

vi(x, y) ρα

(

Zi − g
)

]

(5)
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where the local weights {vi} are defined as in (1), and α is a tuning constant which

is related to the scale parameter σε. In the parametric literature, the solution to

the optimization problem (5) is usually viewed as the root of the normal equation
∑

i vi(x, y)ψα(Zi − g ) = 0, where ψα(ε) = ∂ρα(ε)/∂ε.

To enable robustness, the function ρ(ε) must not grow too rapidly as |ε| → ∞;

or, more precisely, the score function ψ(ε) must be uniformly bounded. In this

context there are two alternative philosophies: Huber (1981) states that ψ(·) must

be monotone and must achieve its maximum value asymptotically, because outliers

may contain useful information. On the contrary, Hampel et al. (1986) claim that

it should tend to zero because outliers are usually extraneous to the models. These

approaches have opposite effects on the properties of consistency and robustness of

estimates; in fact, the second one is insensitive to outliers, but may not converge to

the global minimum point because it admits multiple local roots.

Following Huber’s and Hampel’s philosophies, the loss function can be designed

as unbounded or bounded, respectively. Some important examples are:

a) ρa(ε) =
∣

∣

∣ ε
∣

∣

∣ , ψa(0) ≡ 0

b) ρb(ε) =







ε2/2 , |ε| ≤ α

α |ε| − α2/2 , |ε| > α
(6)

c) ρc(ε) =







ε2/2 , |ε| ≤ α

α2/2 , |ε| > α

d) ρd(ε) = −L
(

ε/α)/α

where L(·) is a density/kernel function and 0 < α < ∞ is a tuning constant that

controls the degree of robustness and must be selected according to the rate of

outlier contamination. The loss function (6,a) was stressed by Wang & Scott (1994)

and is independent of α; (6,b) is the one preferred by Huber, and has a monotone

derivative; (6,c) corresponds to the trimmed method and approximates the bisquare

one of Tukey; finally, (6,d) is a smoothed solution which provides a redescending

ψ-function (see Hampel et al., 1986 p.149). Graphical behavior of these functions

and of their transformations is shown in Figure 4.
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Figure 4. Graphs of loss functions in (6) with L(·) Gaussian and α = 1. The

figure also provides the score functions ψ = ∂ρ/∂ε and weight functions ω = ψ/ε.

The utility of the M-smoother (5) in fitting discontinuous surfaces arises from

the fact that its local properties are better than those of conventional estimators

(LPR included). To be specific, jump-preserving is related to outlier-resistance be-

cause the observations which are placed near a jump point typically yield anomalous

residuals. Since the estimator (5) is the solution of the equation
∑

i vi ψ(Zi−g)=0, it

follows that data on the edges tend to be censored by the functions ψ(·). However,

such scores typically behave as threshold functions, so that discontinuities in the

estimated surface are finally generated.

Looking at Figure 4, one can see that the thresholding effect is particularly hard

in the case of bounded loss functions (6;c,d). From the latter it can be noted that

the minimization (5) coincides with the maximization of the kernel density

f̂K(x, y, Z) =
1

h1h2 αN

N
∑

i=1

K1

(

xi − x

h1

)

K2

(

yi − y

h2

)

L

(

Zi − Z

α

)

(7)

This shows the close connection between redescending M-smoothing and the modal

regression approach discussed in Scott (1992, sec. 8.3.2).
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3.2 Pseudolinear smoothers

The computation of (5), for every point (x, y), typically proceeds by non-linear

algorithms, such as the Gauss-Newton one

ĝ
(k+1)
M (x, y) = ĝ

(k)
M (x, y)+

[ N
∑

i=1

vi(x, y) ρ
′′
(

Zi−ĝ
(k)
M (x, y)

)

]−1 N
∑

i=1

vi(x, y)ψ
(

Zi−ĝ
(k)
M (x, y)

)

(8)

where (k) is a generic iteration and the initial value may be ĝ
(0)
M = ĝK. The direct

minimization of (5) is computationally demanding, and is suitable only if the grid

of values for (x, y) and/or the sample size N are small.

An alternative solution can be obtained from the weighted average form of M-

estimates introduced by Tukey (see Hampel et al. 1986, p.115). Using the residual

weight function ω(ε) = ψ(ε)/ε, one can obtain the equation

P ′

N(g) =
N
∑

i=1

vi(x, y)ψ(Zi − g) =
N
∑

i=1

vi(x, y)ω(Zi − g) (Zi − g) = 0

and solving for g (in iterative form), provides the weighted (W) smoother

ĝ
(k+1)
W (x, y) =

[

N
∑

i=1

vi(x, y)ω
(

Zi − ĝ
(k)
W (x, y)

)

]−1 N
∑

i=1

vi(x, y)ω
(

Zi − ĝ
(k)
W (x, y)

)

Zi

(9)

In parametric models it can be shown that W-estimators have the same influence

function and asymptotic variance as M-estimates (e.g. Hampel et al. 1986, p.116).

If the weights {vi} are non-negative, the same property can be extended to robust

smoothers and it can be concluded that (8) and (9) are equivalent.

Because the ω-functions have a kernel nature (see Figure 4), it follows that

(9) has a structure similar to the kernel regression in the 3D design space. As an

example, consider the loss (6,d) with L(·) Gaussian; one can check that also ω(·) is

Gaussian, and inserting it into (9) provides the redescending (R) smoother

ĝ
(k+1)
R (x, y) =

∑N
i=1 K1

[

(xi − x)/h1

]

K2

[

(yi − y)/h2

]

L
[

(

Zi − ĝ
(k)
R (x, y)

)

/α
]

Zi

∑N
i=1 K1

[

(xi − x)/h1

]

K2

[

(yi − y)/h2

]

L
[

(

Zi − ĝ
(k)
R (x, y)

)

/α
]

(10)

Apart from the iterative nature, the above has the same structure as a kernel regres-

sion which performs local weighting also in the direction of the dependent variable
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Z. It also has a certain connection with the sigma filter used in image denoising (see

Chu et al., 1998); the relationship becomes evident if one replaces ĝR, within L(·),

with the observation Zj which is spatially closer to the point (x, y). However, this

modification significantly worsens the performance of (10). Finally, one can interpret

(9)-(10) as the solution of the nonlinear problem (5) by reweighted least squares;

these solve iteratively the normal equation associated with (5) without computing

the gradient (e.g. Hall & Jones, 1990 p.1716).

In the presence of a large amount of data, it is useful to combine the iterations of

algorithms (8)-(10) with sequential processing of the data (e.g. Grillenzoni, 1997).

In practice, this can be realized by splitting the data-set into m ≥ 10 disjoint random

subsets of size n = N/m, and then averaging the resulting estimates. With respect

to the trimmed solution (6,c), whose ω-function is the indicator I(·), the sequential

algorithm is given by

ḡ
(k)
R (x, y) =

k − 1

k
ḡ

(k−1)
R (x, y) +

1

k
ĝ

(k)
R (x, y) (11)

ĝ
(k+1)
R (x, y) ∝

n
∑

i=1

K1

(

xki − x

h1

)

K2

(

yki − y

h2

)

I
(

∣

∣

∣Zki − ḡ
(k)
R (x, y)

∣

∣

∣ < α
)

Zki

where the first equation is the recursive version of the mean ḡ
(k)
R = k−1∑k

h=1 ĝ
(h)
R

and {xki, yki,Zki} is the k-th sub-sample, k = 1 . . .m. Notice that ḡ
(k)
R is nested in

the smoother through the kernel I(·), and also provides the final estimate.

The above procedure is particularly useful where the data density is much

greater than the surface resolution, and not just for computational reasons. Al-

gorithms which process all data together implicitly average observations within the

same ”pixels” and this tends to blur discontinuities of the surface. In fact, pixels

which are placed on the edges usually include observations with different height.

Now, in the case of data sub-sampling, at each iteration the probability of hav-

ing pixels with non-homogeneous observations is drastically reduced; hence, the

edge-preserving ability of (11) is better than that of (10). Experimentally, we have

checked that a suitable sub-sample size is nearly 1/10 of the surface resolution,

namely n∗ = (ni · nj)/10, which yields the number of iterations m∗ = N/n∗.
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3.3 Coefficient Selection

Selection of the coefficients h, α of M-smoothers could still be carried out with

the cross-validation criterion (2), by computing ĝR−j(xj, yj) iteratively. However, in

the application to LiDAR data, we encountered problems of convergence of the type

α̂ → ∞. A similar drawback was observed by Hall & Jones (1990, p.1717) with

respect to the coefficient of the Huber function applied to models with outliers, and

also Chiu et al. (1998, p.536) encountered difficulties in applying cross-validation.

As a consequence, they recommended using ”visual evaluation” for selecting α, and

Leung (2005) simply assigns subjective values to it.

As pointed out by a referee, the attempt to select α with the cross-validation is

wrong because it is not a bandwidth. It is a tuning constant that controls robustness

and therefore should be treated as a scale parameter. From a parametric viewpoint,

α should be sensitive to the discontinuity edges of a surface, but these have area

zero. This raises a problem of identifiability with respect to the criterion (2). A

more technical argument comes from the analysis of the asymptotic integrated MSE

of redescending M-smoothers. For the model y = g(x) + ε, it is given by

∫

<

MSE[ ĝM(x) ] d x ≈ B1 h
4 +B2 /(Nhα

3)

where the constants B1,2 depend on integrals of the functions g′′, fε, K, L; see Rue

et al. (2002) and Hwang (2004). Now, differentiating the above with respect to α

and equating to zero, the optimal solution becomes α → ∞.

In the parametric literature, a sensible approach to tune α consists in finding

a suitable trade-off between efficiency and robustness (e.g. Hampel et al., 1986

p.399). Indeed, from (6) one can see that robustness of M-estimates is inversely

proportional to α, but their efficiency in absence of outliers is directly proportional

to it. Now, setting α = C σ2
ε , with C > 0, it can be shown that M-estimates of the

location parameter of a Gaussian model maintain 95% asymptotic relative efficiency

with respect to the least squares only if 1 < C < 3. Specifically, in the case of

the loss functions (6) the constant takes on the values Cb =1.345 (Huber), Cc=2.81

(Trimmed), Cd=2.11 (−Gauss); see Fox (2002).

12



In this framework the crucial point is the estimation of σε. In Section 2 we have

seen that the ordinary standard error is biased upward (σ̂ε=3.24), but the MAD sta-

tistic may lead to underestimation (σ̂M=0.25). Now, following Huber (1981, p.180)

an unbiased estimate can be obtained from Winsorized residuals ε∗i = ψb(εi/σε)/σε.

In particular, starting from ε̂i = Zi − ĝK−i(xi, yi) and iterating we have

∣

∣

∣ε̂∗i (k)
∣

∣

∣ = min
{

|ε̂i|, 1.345 · σ̂∗

ε(k − 1)
}

σ̂∗

ε(k) =
(

N

Nk

)[

N−1
N
∑

i=1

|ε̂∗i (k)|
2
]1/2

(12)

where Nk is the number of unmodified errors at the k-th iteration. In LiDAR data

the estimator (12) converged to σ̂∗
ε = .64, independently of the initial σ̂∗

ε(0).

An improvement of the selection strategy can be gained from the robust cross-

validation estimation of the bandwidths. This is obtained by replacing the quadratic

loss in (2) with one of the ρ-functions in (6), and provides optimal MSE estimates

ĥ1,2 (see Leung, 2005). On the basis of these values, one can select α as follows:

1. Robust. Under the assumption of f(ε), L(ε) Gaussian, and the condition 95%

asymptotic relative efficiency with respect to the kernel smoother, the robust

solution is α = 2 σε, where σε must be estimated with (3) or (12).

2. Constrained. In order to solve the non-identifiability problem of α, one may

impose the constraint α = Dh1,2, with D > 0, and then proceed to the cross-

validation estimation. From the robust solution the constant can be defined

as D̂ = 2σ̂∗
ε/ĥ1,2, where the estimates come from the kernel regression.

3. Graphical. The approach of ”visual evaluation” of Chu et al. (1998) can be

made less subjective by defining the set of admissible values. Running the

M-smoother with ĥ1,2, one may find the set S1 = {α < α∗
1 } for which it is

unstable (i.e. ĝM → ∞), and S2 = {α > α∗
2 } for which it is oversmoothed (i.e.

ĝM → ĝK). A sensible choice is given by the midpoint α∗ = (α∗
1 + α∗

2)/2.

In LiDAR data, robust cross-validation (with the criterion | · |) applied to the kernel

regression provided ĥ1,2 = .51. Using the robust solution α = 2σε, the MAD statistic

and the unbiased variance (12) gave α̂ = (0.44, 1.16) respectively. Validity of these

13



values is confirmed by the graphical approach. Indeed, conditionally on ĥ1,2 = .51

and L(·) Gaussian, the admissible set is α∗
1,2=(.2, 1.5).

Surfaces generated by various robust smoothers are displayed in Figure 5. Panels

(a,c) show the results of the nonlinear method (5) with Huber loss, and Panels

(b,d) show the results of the pseudolinear method (11) with Hampel loss. Detailed

description of their coefficients is reported in the heading of the figure. It is apparent

that the method (11) with L(·) Gaussian enjoys the best jump-preserving property,

both in situations of large and small scale variability. This performance worsens by

using the trimmed solution L = I(·), and in the case of unbounded loss functions

(6;a,b) it moves closer to the kernel one in Figure 2.
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Figure 5. Robust regression estimates obtained withK1,2 Gaussian and h1,2=0.5:

(a,c) Method (5) with Huber loss function (6,b) and α=1.16; (b,d) Method (11) with

Hampel loss function (6,d), L(·) Gaussian, α=.44 and m=30.
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3.4 A Simplified smoother

Although robust smoothers are satisfactory in preserving big jumps, they exhibit

some weakness in small variability contexts, such as on the terrain and on the

building roofs. One way to improve this aspect consists of simplifying previous

algorithms by dropping unnecessary components. For example, in the estimator

(9) one could drop the local weights vi(·) by approximating Zi ≈ Ẑi = ĝK(xi, yi)−

the rationale is that kernel estimates ĝK already include those weights. Moreover,

specifying ω(z) = L(z) one can obtain the simplified (S) smoother

ĝ
(k+1)
S (x, y) =

∑N
i=1 L

[

(

ĝK(xi, yi) − ĝ
(k)
S (x, y)

)

/α
]

Zi

∑N
i=1 L

[

(

ĝK(xi, yi) − ĝ
(k)
S (x, y)

)

/α
] (13)

This looks like a parametric M-estimator in weighted average form (e.g. Hampel

et al. 1986, p.115), whose weights ω(z) are designed for piecewise constant surfaces.

In fact, by modeling L(·) as the indicator function I(·), the formula (13) just provides

local means of the data Zi. Moreover, as the value
∣

∣

∣ ĝK(xi, yi) − ĝS(x, y)
∣

∣

∣ becomes

large compared to α, the two points are almost classified in different regions. The

simplified smoother has also some connections with gradient-based filters proposed

by Saint-Mark et al. (1991) and Polzehl et al. (2000) for image denoising. These

filters use weights ω(x, y) which are Gaussian kernels of the Laplacian gradient of

the image. Now, the term [ ĝK− ĝS ] of (13) has a role similar to the surface gradient

evaluated at the empirical points.

At the computational level, the component ĝK(·) of (13) could be replaced by

more efficient estimates, such as (10) or (13) itself. However, in real applications

we noted that they do not improve, or actually worsen, the jump-preserving ability.

The above algorithm is very fast, is stable at the borders and is not very sensitive

to the choice of α. In LiDAR data the admissible range for such a coefficient was

α∗
1,2 = (.2, 1), and Figure 6(a,b) exhibits estimates (13) obtained with α∗=.6 and

k=15 iterations. As one can see, small objects and constant components of the

surface are significantly enhanced; on the other hand, smooth regions on the terrain

are segmented like a staircase. This problem cannot be solved by increasing α,
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because this only causes erosion of small objects on the roofs. Compared with

Figures 2 and 5, the simplified smoother (13) seems the best one for the recognition

of the buildings shape, at least whenever they have a piece-wise constant form.
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(b) − 3D view

Figure 6. Weighted regression estimates of the data in Figure 1 obtained with

the smoother (13), with Gaussian kernels, and the coefficient α = 0.6.

3.4 Using the estimates

Fitting laser data of urban areas with robust smoothers mainly concerns building

recognition. The resulting information can be directly employed in urban planning,

military intelligence and civil protection (e.g. Wang & Tseng, 2004). Specifically,

building extraction is useful in the following fields:

1) Architectural reliefs and computer graphics. They provide 3D digital surfaces

which can represent the morphology of a whole city and can simulate virtual tours

(see e.g. the recent software Google EarthTM). In general, the detected shapes are

refined and made realistic by integrating them with digital cartography and ground

images, typically by means of CAD systems (e.g. Rottensteiner, 2003).

2) Preliminary cartography of non-accessible zones. Obtaining maps from aerial

or satellite images may be hindered by light conditions (clouds, fog and shadows).

From laser data, fast cartography can be obtained merely on the basis of 2D rep-

resentations like Figures 5(b) or 6(a), by merging zones which are external to the

building contours. This is simply the complement of the building extraction.
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3) Digital terrain models. Altimetry maps are used by civil protection for iden-

tifying zones which may be subject to environmental risks, such as water floods

and terrain flows. In all of these cases the preliminary action is to discard data

corresponding to the buildings. Once jump-preserving smoothers have provided the

building contours, one can drop observations inside them by means of GIS softwares.

Subsequently, remaining data are fitted with smoothers (1) or (10).

On the other side, LiDAR technology has few undesirable features that make it

incapable of being a standalone reliable method. For example, laser data have no

positional information along object break-lines, their planimetric accuracy is worse

than the vertical one and they lack semantic information. This urges to integrate

laser information with conventional photogrammetry.

4. Simulation experiments

This section provides further empirical evidence of the goodness of the proposed

methodology. We consider an application to the density function of earthquake data

and a simulation experiment. Both problems deal with jump-preserving.

4.1 Discontinuous densities

When discontinuities are present in probability functions f(x, y), the classical

method of kernel density estimation is inadequate. Following Fan & Gijbels (1996,

p.50) an alternative solution consists in fitting the frequency histogram with a non-

parametric smoother. If jumps are present at the borders, then the local polynomial

regression can be used (e.g. Cheng et al. 1997). However, robust smoothing provides

a more powerful approach.

We consider seismic data of the Northern California Earthquake Data Center

in the area of San Francisco in the period 1968-2005. Figure 7(a) provides the

scatterplot of the magnitude of events (y) versus their depth in Km (x). A frequency

histogram fij of size 40 × 60 was constructed on these data. Figure 7(b) shows the

kernel regression estimate of the density f(x, y) obtained with the cross-validation
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bandwidth ĥ1,2 = 1.5. The main experiment consists in fitting fij without the

portion of data { k : (yk ≤ ymod) ∩ (xk ≤ xmod) }, hence creating an artificial

discontinuity. By applying the redescending M-smoother (10) with L(·) Gaussian

and α = 2 σ̂M = 1, we obtained the density in Figure 7(c). We can see that it

preserves the introduced discontinuity well.
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Figure 7. Regression estimation of a density function. (a) Earthquake data, x=

depth, y=magnitude. (b) Kernel regression (1) on the whole histogram; (c) Robust

regression (10) on the partial histogram; L, K1,2 Gaussian, h1,2 = 1.5, α = 1.

4.2 A simulation experiment

It is also useful to test the methods with a simulation experiment. We consider

the deterministic surface

g(x, y) = .3(1 − x) y +
[

1 + .5 sin(2πx)
]

· I
[

y ≥ .6 sin(πx) + .2
]

(14)
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which is displayed in Figure 8(a) for 0 ≤ x, y ≤ 1. A random sample Zi of size n=

100 was extracted from g(x, y) by assuming (xi, yi) ∼ U2(0, 1), a bivariate uniform

density. A typical realization is shown in Figure 8(b).
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Figure 8. Simulation experiment: (a) Surface path; (b) Random sample.

The experiment consists of reconstructing the surface in Figure 8(a) by fitting

the data in Figure 8(b) with various smoothers. Kernel regression (1) provided the

cross-validation estimates ĥ1,2 = .053 and σ̂M = .074. The resulting surface was

oversmoothed and large prediction errors occurred at the jumps. Application of the

robust smoother (10) has improved the situation. Using the robust selection rule

α = 2σε = .15 we generated the estimates in Figure 9(a). Finally, the simplified

filter (13) has presented serious difficulties in estimating the smooth component,

even reducing its coefficient to critical values, see Figure 9(b).
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Figure 9. Robust smoothing of the data in Figure 8(b): (a) M-estimates (10)

with h1,2=.053 and α=.15; (b) Simplified estimates (13) obtained with α=.05.
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Analysis of the integrated squared error ISE =
∑

i

∑

j

[

g(xi, yj) − ĝM(xi, yj)
]2

sheds light on the difficulties to estimate α. Figure 10(a) shows the shape of the

cross-validation function Qn(h1,2, α). As in LiDAR data, it has a well-defined min-

imum in the first coefficient, but not in the second one. Figure 10(b) shows the

path of ISE(α) conditioned on the optimal value h1,2=.05. One can see that it has a

maximum at α=.15, which is the value that allows the best visual trade-off between

sharpness at jumps and smoothness otherwise (see Figure 9(a)). This seeming con-

tradiction arises from the fact that discontinuity edges have area zero and, in smooth

regions, the estimator ĝM is less efficient than ĝK. In other words, the adaptivity of

robust smoothers at the jump points is largely paid for in continuous regions. These

remarks confirm that α cannot be designed with common bandwidth selectors, and

it is better to tune it as a robustness parameter.
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Figure 10. (a) Cross validation (CV) criterion for the smoother (10) with h1=h2.

(b) Integrated squared error (ISE) conditioned on h1,2=.05.

4.3 Statistical properties

This paper has discussed three kinds of robust smoothers, showing their alge-

braic connections. In particular, we have shown that pseudolinear (10) and nonlinear

(5) estimators are equivalent when they are properly iterated. The bridge between

the two classes is provided by the weighted algorithm (9), which can be simplified

as in (13). Numerical applications have shown that smoothers with bounded loss
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functions have a good jump-preserving ability. In smooth and continuous regions,

however, they may lack convergence in probability.

This problem is well known in parametric M-estimation, where specific assump-

tions are needed to establish the consistency of algorithms with non-monotone score

functions. For example, Freedman & Diaconis (1982) showed that uniqueness of

the global minimum is not enough, and symmetry and monotonicity, on (-∞,0), of

the underlying probability density are necessary. Other examples are provided in

Jurec̆ková & Sen (1996). What emerges in these studies is that the non-monotone

nature of ψ(z), by allowing for multiple local solutions, conflicts with the possible

multi-modality of f(Z). Now, if vi(x, y) are strictly positive weights, this conclusion

can be extended to M-smoothers, yielding that their convergence depends on the

shape of the noise density. In particular, if f(ε) has saddle points, then consistency

is not guaranteed (see Hillebrand & Müller, 2006).

This statement concerns M-smoothers in regions where g(·) is continuous. At

the jump points the non-consistency should, in general, be expected. Indeed, Rue

et al. (2002) showed that the asymptotic bias (AB) and variance (AV) of ĝM depend

on the jump size δ, and resemble the moments of a Bernoulli function

|AB| = πδδ , AV = πδ(1 − πδ) δ
2 , with πδ =

∫

∞

δ/2
f(ε) dε

where f(ε) is assumed symmetric. However, these expressions also show that if the

jump signal δ is large compared to the noise variance, then the statistical quality of

M-estimates tends to improve. In particular, if f(ε) has a bounded support, with

range less than δ, then the consistency of ĝM(·) at the jumps can be achieved.

From the computational viewpoint, problems of convergence of redescending M-

smoothers are evident if one uses Newton-type algorithms as (8). In this case, the

minimization of (5) would involve the second derivative of ρ(z), i.e. first derivative

of ψ(z). Thus, if the latter is non-monotone, its derivative may be negative or may

not exist, and the ”Hessian”
[

∑

i vi ρ
′′(εi)

]

is nonpositive definite. This leads the

algorithm (8) in wrong directions and the numerical convergence toward local or

global minima fails. To avoid these problems it is preferable to solve (5) with direct

search methods, or with pseudolinear algorithms (10)-(11).

21



5. Conclusions

Motivated by airborne laser scanning, this paper has discussed robust nonpara-

metric smoothers. We have proved their efficacy in fitting point data which contain

various discontinuities. The jump-preserving ability of robust smoothers is due to

the fact that they treat observations beyond the jumps as outliers. By ignoring

such data, their local and adaptive properties are enhanced. The resulting surfaces

can be used as 3D schemes for architectural reliefs, computer graphics and urban

planning.

We have developed pseudolinear algorithms which are equivalent to nonlinear

M-estimates, but have the advantage of resembling the linear kernel regression. This

approach is derived through the weighted average form of M-estimates, and can be

implemented in a sequential manner. We have shown that the best jump-preserving

is provided by bounded loss functions, although they may lack consistency. Pseudo-

linear estimators can also be simplified as gradient-based filters, and this improves

their performance in the case of piecewise constant surfaces.

The paper has also discussed practical methods to select smoothing coefficients.

Those of the score components encounter problems of estimability due to the fact

that discontinuity edges have area zero. A good tuning method consists in estab-

lishing a compromise between the efficiency and the robustness of the estimators.

References

Cheng, M.-Y., Fan, J. & Marron, J.S. (1997). On automatic boundary

corrections, Annals of Statistics, 25, 1691-1708.

Chu, C.-K., Glad, I., Godtliebsen F. & Marron, J.S. (1998). Edge-

preserving smoothers for image processing, J. of American Statistical Associ-

ation, 93, 526-541.

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing

scatterplots. J. Amer. Statist. Assoc., 74, 829-836.

22



Fan, J., Hu, T.-C. & Truong, Y.K. (1994). Robust nonparametric function

estimation, Scandinavian Journal of Statistics, 21, 433-446.

Fan, J. & Gijbels, I. (1996). Local Polynomial Modeling and its Applications.

London: Chapman & Hall.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Thousand

Oaks (CA): Sage Publications.

Freedman, D.A. & Diaconis, P. (1982). On inconsistent M-estimators, Annals

of Statistics, 10, 454-461.

Grillenzoni, C. (1997). Recursive generalized M-estimators of system parame-

ters, Technometrics, 39, 211-224.

Hall, P. & Jones, M.C. (1990). Adaptive M-estimation in nonparametric re-

gression, Annals of Statistics, 18, 1712-17-28.

Hall, P. & Titterington, M. (1992). Edge-preserving and peak-preserving

smoothing, Technometrics, 34, 429-440.

Hampel, F., Ronchetti, E., Rousseeuw, P. & Stahel, W. (1986). Robust

Statistics: the Approach Based on Influence Functions. New York: Wiley.
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