Optimal Recursive Estimation of Dynamic Models
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This article checks, using both real and simulated data, the effectiveness of modern adaptive techniques to track the parameters of
time-varying dynamic models. The real case studies concern a bone marrow transplant data set published by Tong, the gas furnace
model of Box and Jenkins, and two series of West German interest rates. Simulation studies focus on ARX models with smoothly
and suddenly changing parameters. The general approach is to compare the fitting-forecasting performance of classical and adaptive
methods, holding fixed the order of the models. At the methodological level, the basic step is taken by unifying known estimators,
such as recursive least squares and Kalman filter, into a general algorithm. Next, the problem of optimal design of the tracking
coefficients (such as discounting factors and learning rates), is solved by optimizing a quadratic functional based on one-step-ahead
prediction errors. All applications show that adaptive modeling, based on the design and the optimization of recursive algorithms,

leads to significant improvements of the forecasting performance.
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1. INTRODUCTION

In time series analysis, system identification, and econo-
metrics, there is a growing interest in statistical methods for
nonstationary and nonlinear stochastic processes. Realiza-
tions of such processes, in the form of finite time series, may
be encountered in many applied fields, including economics,
industrial production, environmental phenomena, and
medicine. Dynamic models developed by Box and Jenkins
(1976) have worked satisfactorily in many situations under
conditions of constant parameters and linearity in the vari-
ables; moreover, they provide useful starting points for new
kind of representations. Indeed, bilinear autoregressive
moving average (ARMA) models, threshold autoregressive
models (see Tong 1990), are obtained by direct extension of
standard time series schemes.

To properly link real information content of the data and
hypotheses about the model structures, exploratory tools of
data analysis must be used. With regard to nonstationarity
and the detection of parameter changes, natural tools are
given by recursive estimators with adaptive implementation
(see Ljung and Soderstr6m 1983). Except for the Kalman
filter (KF) case, these methods do not assume specific laws
of parameter evolution and as such are analogous to non-
parametric regression techniques. The problem of designing
the tracking coeflicients of adaptive estimators—for example,
the discounting factor in recursive least squares (RLS) and
the learning rate in stochastic approximation schemes—is
similar to the problem of choice of the window width in
kernel type estimators (see Hardle, Hall, and Marron 1988).
In the context of recursive algorithms, this problem may be
solved efficiently by minimizing a quadratic loss function
based on one-step-ahead prediction errors. This solution be-
longs to the conditional least squares (CLS) estimation for
stochastic processes discussed by Hall and Heyde (1980, p.
172) and Tjostheim (1986) and extends the maximum like-
lihood approach used in Gaussian state-space systems (see
Harvey 1989 and Pagan 1980).

The central purpose of this article is to check, on real and
simulated data, the efficacy of modern adaptive methods in
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tracking the parameters of evolving dynamic models. At the
methodological level, the basic steps are represented by the
unification of existing algorithms into a general recursive
estimator and the optimization of its coefficients on each
data set by means of the CLS approach. The attempt to
develop unified algorithms has been recently pursued i)y
several authors in system identification (see Salgado, Good-
win, and Middleton 1988). Here, further developments are
possible in the field of adaptive implementation, concerning
variable tracking coefficients (see Bittanti, Bolzern, and
Campi 1989) and on-line robustification. On the other hand,
the idea of estimating the coefficients of adaptive algorithms
is typical of econometrics, but it has been never applied to
schemes other than the KF.

My case studies consist of medical, industrial, and eco-
nomic applications. Section 2 focuses on the bone marrow
transplant data set of Tong (1990); Section 3 investigates
the gas furnace model of Box and Jenkins (1976), and Section
4 models interest rate series of West Germany, Finally, Sec-
tion 5 presents, two simulation studies carried out on ARX
systems with smoothly and suddenly changing parameters.

2. A MEDICAL APPLICATION

Tong (1990, p. 500) published a set of 55 observations on
three variables— X = white blood cell count, Y = platelet
count, and Z = hematocrit—f{rom a patient affected by leu-
kemia who received a bone marrow transplant. Platelet count
in the initial period of posttransplant has been shown to be
a good indicator of subsequent long-term survival; thus it
represents the main factor to be explained. Whereas the pro-
cess Z, is stationary in mean, the variables X, and Y, exhibit
a growth (see Fig. 1), which reflects the positive response of
the patient’s hematopoietic system. Owing to this common
pattern, we have focused the analysis on these two variables.
To make their dimension comparable, Y, was divided by 10.
Stationarity in mean was achieved with a difference of order
one:y,=Y,— Y., x,= X, — X, ; the corresponding sample
correlation functions r(y,x,—;) are reported in Table 1. It
can be seen that y, and x, are mutually dependent, but the
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Figure 1. Plot of Medical Time Series: Y.(—), X, (~ - -).

main causal action, in terms of cross-correlation, is that of
X« on y,. This is a natural consequence of the central role
played by white blood cells in the immune system. Applying
the Box-Jenkins analysis to rows 1 and 3 of Table 1 leads
us to the ARX model,

W= —0.378)),_2 + 1.647)6‘,_2 - 1.141X,_3 + dt,
3.2) (5.6) (3.8)

R*= .49, Q0=273X10% (1)

where the values in parentheses are ¢ ratios and Q is the sum
of squared residuals (in-sample prediction errors). The
weakness of the feedback.y, = x, is confirmed by the fact
that the R? coefficient of the inverse model

x, = .264){,_1 + .ll4y‘_| - .164y1—2 + é(
(2.0) (2.2) (2.9)

was .27.

Under normal circumstances, biological systems may
present nonlinear dynamics (see Tong 1990) but are sub-
stantially stationary. But when diseases occur and the effec-
tive treatments are supplied they become, by definition, evo-
lutive. In particular, this is the case for radical interventions
such as transplants, because they involve the adaptation of
a donor’s hematopoietic system in the patient’s body. To
check the stationarity of model (1), we now introduce re-
cursive estimation methods that allow the regression coef-
ficients to vary over time.

Writing the ARX system in polynomial form with the
Box-Jenkins notation, we obtain (1 — ¢,B?)y, = (wo
+ wB)x,-, + a,, where B is the lag operator. This model
may be written in regression form as y, = 8’z, + a, where
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z; = [V-2, X2, X3} is the vector of “regressors” and g’
= [¢,, wy, w,] are the parameters. Now, replacing the con-
stant vector 8 by a time-varying vector 8,, a recursive esti-
mator for 8, that combines the main adaptive algorithms is
given by

31 = ﬁ:—l + aPaz,(y, — Z:Bt—l)’ 30 = 8o (2a)

P_zz;P,_,

1
P,=—(P_ —
! (" A+z/Pj2

A ) + 'YII, PO = 701, (2b)

where («a, A, v;) are tracking coefficients and (8, o) are
parametric initial values. P, is the “gain” matrix, which may
approach the dispersion matrix of §,. Some alternative for-
mulations leading to (2) are discussed in the Appendix.

Algorithm (2) encompasses three basic adaptive estima-
tors:

1. The RLS with exponentially weighted observations
(EW-RLS), when (a = 1, v, = 0). In this case (2a) is asymp-
totically equivalent to the discounted ordinary least squares
(OLS) estimator 8, = (T N2,z ) "' (Z -y A2, y;), where
0 < X\ < 1. This version involves direct matrix inversions
but does not require initial conditions.

2. The simplified KF, when (« = 1, A = 1). A probabilistic
interpretation of the filter is that it provides the optimal mean
squared error (MSE) estimator when the parameters follow
the Gaussian random-walk dynamics 8, = B, + e, e
~ IN(0, v,I) with initial condition 8, ~ N(Bo, vol). In
practice, §, minimizes the distance E|f, — B> for
each ¢.

3. The least mean squares (LMS), when (v, = 1, 1/A
= 0). This algorithm is also known as the stochastic gradient,
because it implies that P, = I for all ¢ and « is the learning
rate.

These algorithms are discussed in detail in the books of Ljung
and Soderstrom (1983), Goodwin and Sin (1984), and Wid-
row and Stearns (1985). The need to unify them into a gen-
eral scheme arises from the facts that no method is the best
one and that the real dynamics of parameters are unknown.
In particular, they might be nonlinear or deterministic.

In general, algorithms 1 and 3 do not assume an explicit
model for the parameter evolution. But given the algebraic
relationships between the various schemes, the EW-RLS may
be viewed ‘as a KF in which the variance component v,I is
replaced by

i

! -1
= (Z X"‘z,-z}) — 0,(1)
i=1

_ P_,zz/P,_,
A+z/P_z

Table 1. Sample Correlation Functions of Medical Series
Lag 0 1 2 3 4 5 6 7 -8 9 10
r(Yi-«) 1 -.160 -.302 .069 —.047 .023 .090 -.069 —-.062 .007 .209
r(XXe—x) 1 .165 -.069 146 —-.184 -.057 -.102 —-.369 -.118 .049 12
r(Yoe-«) .106 .034 .438 -.336 -.303 169 -.001 -.005 —.094 —-.063 113
r(Xye—) 106 317 —.293 —-.082 .318 —.064 —.184 -.166 072 .206 .008
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(see the Appendix). Thus the “implicit” parameter dynamics
of algorithm 1 is a random walk 8, = 8,-, + ¢, in which the
input has the conditional distribution (e/|z, z-; ...)
~ IN(0, Z,). A similar interpretation holds for the LMS
(see Ljung and Gunnarsson 1990); however, it is quite dif-
ficult to understand the meaning of the matrix Z,. Because
the filter (2) may be further extended, we prefer to look at
the foregoing unification in terms of a nonparametric regres-
sion, in which 8, = f(z,, z,, ...) is a function of lagged
values of input and output z;_; = [¥,_r-1, X;—x—1] and (2) is
a one-sided smoother.

It is easy to check that both coefficients (), ;) have the
role of preventing the matrix P, from tending to 0, which is
the essential condition for tracking the parameter changes
(B8 — B,-1). As in the nonparametric regression, their design
should provide a suitable trade-off between tracking of the
regression function and accuracy (smoothness) of its trajec-
tory. An optimal selection procedure for the coefficients of
(2) arises from CLS estimation (see Hall and Heyde 1980,
p. 172; Klimko and Nelson 1978; and Tjostheim 1986). This
amounts to minimizing a penalty function given by the sum
of squared innovations (one-step-ahead prediction errors),

(&’ X$ ‘9]; 60’ ‘?O)T

T
= arg min{Qr =2 n— EWlz, 2

1=]

--.)]2], (3)

where T is the number of observations. In Gaussian state-
space systems, the criterion —Q7r approximates the log-like-
lihood function when the KF approaches the steady state;
that is, when P, — P constant (see Harvey 1989, p. 185 and
appendix).

Calculation of Q7 is realized by (2) with the prediction
errors d, = (y, — z/8,-,) of Equation (2a). These must not
be confused with the recursive residuals 4, = (y, — 8:z,), .
which tend to O as P, increases, by letting A\ = 0 or v,
- 00. Usually Q7 has a nonzero lower bound and may be
minimized even with respect to the starting values (8, vo),
which have an important role in the tracking. To simplify
the nonlinear optimization (3), and to avoid identification
problems, it may be reasonable to constrain the value of
some coefficients such as (yo = v,) = 7.

We now apply the adaptive framework (2)-(3) to the ARX
model of the bone marrow transplant data. Optimization
(3) was carried out with the MAXLIK routine of the GAUSS
package using the designs adopted in system identification
as initial values for the coefficients—namely, a = .5, = .97,
v: = .001, and v = 1—and letting 8, = B, the OLS esti-
mates in (1). Convergence required many iterations; results
are reported in Table 2 in constrained and unconstrained
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Figure 2. Plots of (a) Parameters (¢, ——, o = ~ =, &y « - - - ) @nd (b)
Innovations (& ——, ¥y « -+ - - ).

form. The ¢ statistics (in parentheses) are quite significant,
but asymptotic normality may not hold for highly nonlinear
estimation problems such as (3). Constrained estimation was
concerned with fixing a = —1, v, = 0 as suggested by the
first row of Table 2; it provides the best result and points out
the importance of LMS-RLS adaptation mechanisms. The
final reduction of -statistic Qr with respect to the constant
parameter model (1) is approximately 50%.

Figure 2a shows the trajectories of the recursive estimates
Be Figure 2b plots the sequence of innovations 4,. Both are
generated with the coefficients in row 1 of Table 2. It can be
seen that mean values of ¢,,, &, and &,, approach the OLS
estimates in (1) and that the sequence 4, has a nonincreasing
variance. This is an important result, as the ultimate purpose

Table 2. CLS Estimates (and t Ratios) of the Coefficients of Algorithm (2)

Estimates 7o 10 oo B0 & X +1 Qr
Normal .014539 —1.108 -1.313 3.445 —-.5638 .8380 648 - 7 156.3€ + 6
@) (23.5) (10.9) (12.8) (23.1) (48.2) (1.5)

Constrained .000352 -1.5318 —1.658 5.491 —-1* .8013 0* 136.7E+ 6

* Designates constrained (fixed) values.
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of a time-varying parameter modeling is to obtain stationary
innovations.

3. AN INDUSTRIAL APPLICATION

In this section we apply and extend the adaptive frame-
work (2)-(3) to the transfer function (TF) models of Box
and Jenkins (1976), focusing on the well-known gas furnace
data. This case study has already been treated with recursive
estimators by Young (1984, 1985), who changed the order
specification of Box-Jenkins. This will not be done in our
application, because our aim is to compare constant and
variable parameter methods.

Dynamic models with rational transfer functions and
Gaussian noise {&,} connect an output process {y,} to a
control input {x,} in the following way:

_(wotw B+ --- +wsB’)x
YU =6,B- - —5,B)

(L+ 0B+ - +0,B) _
(I=6:B— - — 6B "

where (w;, 9;; 8;, ¢;) are parameters. Stability conditions
require that polynomials (B), ¢(B), and 8( B) have stable
roots and that the coefficients wg, w, ... w, are bounded.
Model (4) is nonlinear in the parameters 4; and §; but linear
in the variables. To appreciate this, we define the auxiliary
systems m, = [w(B)/d(B)1x-s, n, = [6(B)/ $(B)}a, and de-
rive the pseudolinear representation

a, ~IN(Q, 0%), (4)

r s
V= (E ome_;+ 2 “-’ixt—b—i)

i=1 i=0

14 q
+ (z ¢>jn,_,- + Z Oja,_j) + a;. (5)
Jj=1 Jj=1
This equation may be rewritten as y, = 8'z, + a,, where g8’
=[6y...,w0..., P...,0;...]is the vector of parameters
and z; = [m—y. .., Xi=p. . o » W—y. . ., Qy—. . .] is the vector
of “regressors.” Note that the unobservable terms { m,—;, #,—,
a-;} may be generated sequentially starting from
{x;, ¥}, as discussed by Box and Jenkins (1976, p. 390).
The gas furnace data set of Box and Jenkins (1976) con-
cerns a sample of 296 observations from a gas furnace in
which air and methane are combined to form a mixture of
gases containing carbon dioxide (CO,). The air feed was
kept constant, but the methane feed rate (input) was varied
to form the desired CO, concentration (output); the sampling
interval was 9 seconds. Series { J;, x;} with mean 0 are plotted
in Figure 3a, together with the residuals (in-sample inno-
vations) {4,} of the fitted model

(—-.531 — 378B — .518B2)(1 - .5503)'l
W= X—3

(=71 (=36) (—4.8) )\ (~15.4)
1 - 1.533B + .634B%\™" .
+( (=32.1) (12.5)) G ()

where Q = 22%% 42 = 16.67. This model was identified by
Box-Jenkins by means of sample correlation functions; some
doubts about the adequacy of the specification are raised by
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Figure 3. Plots of (a) Series (y;,——, X¢ ===, & -+ ) and (b) Re-
siduals (6 —, +26 -~ - -).

the residuals in Figure 3b. We see in fact that the variance
of 4, significantly increases over the last 100 observations,
probably because of changes in the physical /chemical char-
acteristics of the gas furnace and of its inputs. These changes
are usually associated with variations of temperature of the
plants and nonhomogeneity of the quality of raw materials.
In both cases, the effects on the variability of system param-
eters are remarkable.

Nonlinearity in the parameters of (4) has practical con-
sequences on the estimation, because iterative algorithms
must be used: £ = ¥ + 3%, where 340 is the adjust-
ment in the kth iteration. Simple algebraic transformations,
based on equating the number of iterations and the number
of observations, (k = T') = t, yield the recursive version of
such algorithms. An adaptive scheme that reconciles many
of the existing algorithms for TF models—such as recursive
maximum likelihood (RML; Ljung and Séderstrém 1983),
extended Kalman filter (EKF; Goodwin and Sin 1984), and
refined instrumental variables (RIV; Young 1984)—can be
obtained from the approach suggested by Salgado et al. (1988)
and by Bittanti et al. (1989):

B(t) = B(1 — 1) + (1 + &, B+ a; BHP()E(1)a(1),
B(0) = Bo (72)
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and
1 P(t — DEOE@) Pt — 1)
P)=-P(t—-1)— = =
R ' 7T oy 7
+7l=38P(t—1),  P(0)= 9, (7b)
where {(¢) = — [aa, /83],-,(,_,) is the gradient vector and d(¢)

= [y, — 2(¢)'B(t — 1)] is the prediction error. All of the
coefficients (A, u, v1, 6, ) have the role of keeping the gain
matrix P(¢) positive definite and uniformly bounded in
probability: P[0 < P(f) < co] = 1, which is the essential
condition for tracking the parameter changes.

Apart from the nonlinearity (incorporated by the gra-
dient), Algorithm (7) differs from (2) for three structural rea-
sons:

1. The stable polynomial a(B) = (1 + a; B + a; B?). This
makes (7) a multistep algorithm in the sense that past ad-
justments P(¢t — j)§(¢t — j)d(t — j), j > O intervene in up-
dating the current estimate. This approach was discussed by
Benveniste (1987).

2. The linearity of Equation (7b) with respect to (1/X, g,
¥1, 9). Such an implementation introduces flexibility and
may simplify the optimization of criterion (3).

3. The presence of the factor —8P*(¢ — 1). This has the
role of balancing the excess of discounting activity induced
by the coefficients A and v, which may cause P(¢) to blow
up. Indeed, Salgado et al. (1988) have shown that for § > 0,
« = 2, the factor has the same effect as does the addition of
a positive definite matrix to P~!(¢).

At the computational level, what fundamentally distinguishes
the various estimators is the way the vector {(¢) is calculated.
Standard differentiation shows that the analytical expression
of the gradient of model (4) has the representation

daq,| _
&= [— 55] - G(B)z,
_ [ B !
G(B) = dlag[e(B)G(B) Lovstrys oge 8(B) Ipiay| 5

which may be adapted to online calculation. In particular,
note that for ARMAX models, where 8(B) = ¢(B), we have
£() = [2(1) — ZL, 6:,(0)E(z — D)]. Thus for the choice of
{$:}, there are two possibilities: setting {, = £, we have non-
linear (NL) estimators, whereas setting {, = z, we have pseu-
dolinear (PL) algorithms. In this context, the recursive re-
siduals @(z) = [y, — B(2)'2(2)] have an important role, as
they may be used for updating the vector of “regressors”
CzZ(t+ 1) = [m() at—q+ NI

......
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We now apply the foregoing algorithm to the gas furnace
model, trying to estimate its coefficients with the CLS ap-
proach (3). Leaving the parameter vector 8, unconstrained,
the parsimonious parameterization ol of the covariance
matrix may be justified by the fact that (wp, w;, wz; &,
¢, ¢2) have similar sizes. Because the coefficient « is highly
nonlinear, and its estimation may cause numerical problems,
its value should be determined with a search procedure. In
practice, given a small grid, « = .5, 2, 3, CLS estimations of
the coefficients A, g, . . ., o are carried out conditional on
each value of x. Next, the best solution is selected on the
basis of the lower value of Q7. '

Table 3 reports the estimates obtained with both the gra-
dients z, and £, and conditional on the choice x = 4. Some
of the coefficients are not significant (e.g., a; and y,), which
means that a more parsimonious algorithm may be sought.
The reduction of statistic Q7 over model (6) is greater than
25%; owing to the significance of the factor A, this result may
be largely ascribed to the RLS component and to the pseu-
dolinear implementation ¢, = z,. The path of the parameter

estimates §(¢) generated with the coefficients in the first row

of Table 3 can be seen in Figure 4. Moreover, Figure 5a
shows the innovations @(¢) with the adaptive confidence
bands +25(), where 52(¢) = A&2(¢ — 1) + (1 — N)a@2(z).

Given the presence of many significant coefficients, there
is a need to check whether the reduction of the statistic Q7
is significant. Because the stationary model (6) is encom-
passed by the adaptive system in Table 3, and offline and
online innovations are independent Gaussian, standard F
tests may be applied. Doing so, we obtain F = 13.64, which
is 1% significant because Fy4(7,280) = 2.71. Unlike in the
medical application, here we have a system that becomes
increasingly nonstationary and for which adaptive estimation
is unable to provide stationary innovations. But apart from
a couple of outliers, the conclusion of stationarity may be
accepted for the recursive residuals d(¢) in Figure 5b.

Concerning the nature of the change in the parameters of
Figure 4, some hypotheses have been already introduced by
Young (1984, 1985), who fitted a simplified version of the
gas furnace model with a KF based on instrumental variables.
A number of possibilities exist, such as (a) bad data quality,
in particular systematic measurement errors over the last 50
samples; (b) a progressive change in the physical or chemical
characteristics of the inputs; and (c) nonlinearities in the
dynamics of the system (e.g., of bilinear type), which may
arise as a consequence of a change in the temperature of the
plant. In particular, if temperature rises, then the volume of
the input gases increases, and it is difficult to control the
desired CO, concentration.

Table 3. CLS Estimates of the Coefficients of Algorithm (7) with x = 1/2

&

—o(0)  —=&0)  —@A0)  5(0)  40) —64(0) Yo A “ Y1 5 —dy 2 Qr
z, 853 270 332 509 108  .130 0165 974 167 49E—4 00061 664 232 1243
(4.5) (1.1 (12 B0 (56 (:6) (1.8)  (125) (2.9) %)) 1) (19 (9
& 790 27n 309 548 117 272 0003 956 441 A456—4 00151 572 221 1294
(3.5) (1.0) 1) @8 @1 (9) (1) (60.1) (1.8) N (N @1y (8
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Figure 4. Recursive Estimates Generated by the Coefficients in Row 1
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4. AN ECONOMIC APPLICATION

The third case study concerns the relationships between
short-term (Y) and long-term (X') interest rates. According
to Keynes’s economic theory, the variable X should deter-
mine Y, based on the fact that it has lower variability. To
check this hypothesis, we have considered two time series:
X = “interest rate on 3-month loans in the money market”
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Figure 5. Graphs of (a) Prediction Errors &(t) and (b} Recursive Resid-
vals 4(t).

As in the medical application, here stationarity in mean
of X, and Y, was achieved by differencing. The resulting series
x, and y, are displayed in Figure 6, showing a clear situation
of nonstationarity in covariance. The big outlier yss was
replaced by Jass = 4 (V254 + y2s6)-

Sample correlation functions are given in Table 4 and
lead to the TF model

=( .806) 1—.3563)“
=\(1.8) ( (4.3) '

and Y = “yields on bonds outstanding for total fixed interest 1+.301B\(1— .405B'*\!
securities” for West Germany (Frankfurt main market), for 5.1 (5.9) t
the period January 1960-December 1987. Monthly data, for 336
atotal T = 336, were provided by the Deutsche Bundesbank Q=73 42=548. (8)
(see Liitkephol 1990, p. 505). 13
Table 4. Sample Correlation Functions of Economic Series

Lag 0 1 2 3 4 5 6 7 8 9 10 11 12
(YY) 1 .32 18 .03 12 .09 .03 -.03 -.02 -.16 -.03 -.05 .29
(XX} 1 48 .08 -.01 .00 .03 .00 -.05 .01 .01 .06 .09 .08
r(yXi—x) A7 32 14 19 15 .09 01 -.08 -.07 -1 -.10 -.01 12
(Y e-x) 47 .20 A1 .02 -.01 .05 .02 .03 .05 .08 11 15 12
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Figure 6. Dilferenced Series: (a) Short-Term Interest Rate; (b) Long-
Term Interest Rate.

With this, the Keynes’s hypothesis of causality, x;, = y, is
confirmed.

Whereas in the estimation of (8), the outlier at ¢ = 255
was dropped for reasons of robustness, in the recursive con-
text this adjustment was necessary to assure minimal tracking
properties. Indeed, the CLS estimation of the coefficients of
(7) provided a value of A > 1 together with 4, = 0. The
“new” observation jss has partially solved the problem for
7., results for a simplified version of (7) (without a,, ) are
presented in Table 5. A general feature of the coefficients in
Table 5 is that A > 1 is balanced by 4 < 0. But this may not
be sufficient to keep P(z) > O, and only for §, = § do we
have ¥, > O significantly. In any event, the implementation
¢t = z, still provides the greatest reduction of Qr(—17%).
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The recursive estimates 3(¢) generated by coefficients in
row 1 of Table 5 converge (toward constant values), whereas
the solution in row 2 shows a sufficient tracking ability. The
paths of 8(¢) and of the diagonal elements of P(¢) are given
in Figure 7; they suggest some remarks:

1. Consistently with Figure 6a, system (8) is stationary at
the beginning (¢ < 80) and at the end (¢ > 260) of the sample,
although with different patterns.

2. The greatest change is in the noise component, where
the AR filter (1 — ¢, B'?) is gradually replaced by the MA
one (1 + 6,B). This may be interpreted as the tendency of
short-term variables (e.g., speculative bubbles) to prevail in
financial markets.

Table 5. CLS Estimates of the Coelfficient of Algorithm (7) Applied to (8)

$i @o(0) 5(0) $:12(0) 6:(0) Yo A A Y1 & Qs

z, 819 269 1.204 105 519 1.035 -.557 .0002 651 46.25
(6.1) 27 (.1) (N 29 (66.2) (9) (1.4) (1.3)

& 919 473 921 176 283 1.054 -.680 .0052 -.223 47.38
@1 2.8) @3.1) (:6) (1.4) (21.3) (.1 (2.9) (-8)
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The previous outlier adjustment creates a need for robust
recursive estimates. Under the assumption of Gaussian in-
novations, a robustification of algorithm (7) that adopts
the two-sigma rule consists of replacing d(¢) with @*(?)
= [i(t)a(t)], where

i) =1
= 26(t — D]a()|™!

if ()l <2a(t—1)

if la(t)] =26(¢— 1), (9a)

53 (e) = Ae2(1 = 1) + (1 = M[nan1?,
3%(0) = 0§, (9b)

and &2(¢) is a robust adaptive estimator of the innovation
variance. Filter (9) must be placed before (7) and requires a
suitable initial value of ¢3. Robustness aside, it tends to
smooth recursive estimates and thus is useful in tracking
slowly varying parameters.

5. TWO SIMULATION STUDIES

In this section we check, with small-sample Monte Carlo
experiments, the effectiveness of the previous methods in
tracking the parameters of evolving ARX models. Simulation
consists of 30 independent realizations of length T = 200

100 120 160 180

(a)

140 200

100 120 140 180

(b)

20 40 60 80 160 200
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from a system

V= OV + o Xy t+ @y, X = 1% + e,

a, et -~ IN(O’ l)’ (10)

in which ¢,, w, are functions of time that change smoothly
and suddenly.

The first experiment considers relatively smooth parameter
functions, such as

4, = 7. RIS~ 100 + 35))
‘ (1 — 100 + 35)
_sin(.15(z — 100 — 35))
(t—100—-35 |’

~ 2,000,000 + (¢ — 100)*

The plots of these functions are given in Figure 8, c and d;
Figure 8a provides a typical realization of the implied process
;. The marked nonstationary pattern is mainly attributable
to the excursions of the AR parameter ¢, outside the stability
region (—1, +1). The algorithm used for fitting, with criterion

L5

15 00 120 140 180

©

15

-5 . - . . .
0 100 120 140 160 180

(@

20 40 60 80 200

Figure 8. Plots of (a) a Realization of the Process (10)-(11), (b) Its Recursive Innovations, and (c, d) Estimates &, @ (—) and Functions ¢, «;

(-=).
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Table 8. Mean Values (and Standard Errors) of the Coefficients of Algorithm (2), Estimated with Criterion (3),
in 30 Independent Replications of System (10)
Model ¥ o @9 by a Or Qous S, S.
{11) 0096 .0168 1103 9651 3123 274 828 7.8 5.7
(-0001) (.0127) (.0232) (.0037) (.0552)
(12) 0017 5754 -.6310 9866 4204 233 452 3.4 1.9
(.0001) (.0185) (.0326) (-0025) (.3281)
(3), the various replications was (2)-(9) with the constraints moving around 0), OLS innovations do coincide with the
(70 = v1) = vand a = (1 + aB), which introduces multistep.  series y,.
Estimation was carried out with the FMINS routine of The second experiment deals with suddenly changing pa-
the MATLAB package, which is based on the simplex rameters, such as
method and is somewhat time-consuming. Table 6 reports
mean values and standard errors of the coefficients in 30 é,=.6, t=1...50,151...200
replications and the mean value of Q7 in OLS regressions.
It also provides the statistics S, and S, = Z2% (¢, — ¢/)?, =.9, t=51...100
where ¢, = 307! £, ¢, is the mean value of the recursive =3, t=10l...150,
estimates. Figures 8c and 8d show the paths of ¢, and @,
(which are close to the parameter functions), and Figure 8b w, = —.60, t=1...25,176...200
shows the recursive innovations (which are nearly stationary) =—05 ¢=51...75
of the series y, in Figure 8a. Because the OLS estimates of o T
the parameters of model (10) approach 0 (for ¢, and w, =-.25, t=151...175. (12)
20 1
05
04}
03F  eeecemeieesesneed
20 40 60 80 100 120 40 160 180 200 0'20 20 40 60 80 100 120 140 160 180 200
(a ©
10 -0.1

20 40 100 120 140 160 180

@

20 40 60 80 100 120 140 160 180

(b)

200

Figure 9. Plots of (a) a Realization of the Process (10)~-(12), (b) the Corresponding Online (——) and Offiine (- - -) Innovations, and (c, d)

Estimates ¢, @, (——) and Functions ¢, w, (~ - -).
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These functions are displayed in Figure 9,c and d; Figure 9a
shows a typical realization of the implied process (10).
The algorithm used for fitting, with criterion (3), the various
replications was (2) with the constraint v, = v, and with
variable tracking coefficients. A rule to make adaptive the
discounting factor of RLS algorithms has been discussed by
Fortesque, Kershenbaum, and Ydstie (1981) and Bittanti et
al. (1989); it consists of creating an inverse relationship be-
tween factor and innovations. Applying this principle to (2),
we may define

M=[1-(1-Na1, yv=v-a (13)

which have a similar effect on the gain matrix. In practice,
as | d,| worsens, P, increases so as to improve the tracking
capability of the algorithm.

Estimation results are presented in row 2 of Table 6, and
Figure 9,c and d, plot the mean values of recursive estimates.
The general indication is that the algorithm (2)~(13) is quite
good in tracking jumps of medium size, such as +.3. Finally,
Figure 9b compares the innovations of the series in Figure
9a obtained with the adaptive algorithm with those of an
OLS regression on the model (10). As in the previous ex-
periment, we may check that recursive innovations are nearly
stationary and have a variance significantly lower than that
of the OLS ones. This property is systematically confirmed
by statistics Q in Table 6; the different sizes of Q and S in
the two experiments is mainly due to the different range of
variation of the parameter functions (11)-(12).

6. CONCLUSIONS

In this article we have considered an adaptive regression
methodology based on the unification and optimization of
existing recursive algorithms. Using several numerical ex-
amples, we have demonstrated its ability to track the param-
eters of evolving dynamic models and to improve predictions.
General indications of the various applications can be sum-
marized as follows:

1. In all the CLS fits, the most significant tracking coef-
ficient was the RLS component A, rather than the LMS com-
ponent o or the KF component v. This can be explained by
the fact that it updates the gain matrix P, in a more flexible
and adaptive way.

2. In the application of Algorithm (7) to TF models, the
pseudolinear implementation (approximate gradient) is more
effective than that of Gauss—-Newton in minimizing the sta-
tistic Q7. The reason is that computation of the exact gradient
£ = G(B)z, slows down the adaptation speed of the algo-
rithm.

3. Optimal values of @, A\, and vy and 8, and v, can seldom
be determined on the basis of a priori information. Heuristic
design of these coefficients is dangerous, because the value
of Q7 may turn out to be greater than that of constant pa-
rameter models. On the other hand, statistical properties of
CLS estimates have not been entirely investigated (see
Tjostheim 1986).

The general conclusion at this point is that adaptive methods
represent important tools in the analysis of nonlinear and
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nonstationary time series. Nonetheless, further developments
are still possible, leaving this field of study substantially open.

APPENDIX: BACKGROUND

We review known results that lead to Algorithm (2) and Cri-
terion (3).

KF

Given a regression model y, = 8/x, + a, with time-varying pa-
rameters, the typical assumption for parameter dynamics is the
random walk. Such an assumption has the advantage of simplicity
and flexibility and leads to a dynamical system that has a state-
space interpretation:

Bi=8-1+e, e ~IN(,Z) (A.12)
Vi =Bix + a, a, ~ IN(0, ¢2). (A.1b)

Given values for the coefficients o2, T (a positive definite matrix),
the optimal MSE estimator of the unobservable sequence {8,} is
the simplified KF (see Goodwin and Sin 1984)

El = ﬁl—l + Px,(y, — xl’B‘—l) (A.2a)
P_ixx/P_,

=P, — =+ 3, A.2b

P =Py o2 + x/P_ X, (A-26)

where P, is the dispersion matrix of §,. Assuming that 8,, ~ N(B,,
Py), suitable starting values for the filter (A.2) are 8, and P,. To
reduce the number of coefficients to be specified a priori or to be
estimated, the covariance matrices are usually designed as = = I
and P, = v,l. This may be admissible when the regressors x;, have
the same scale.

RLS

The previous framework becomes problematic when the param-
eters are deterministic or their dynamics are nonlinear and generally
unknown. In this case, it is necessary to use the approach of non-
parametric regression, in which the stress is on the design of suit-
able smoothers and local estimators. Local regression obtained
by discounting observations with exponential weights B8,
= (24 M%x])"HZ4 M%), 0 < N < 1 is preferable to the
method of sliding windows (rolling regression). The reason is that
the exponential profile gives more weight to recent observations
and, therefore, it may track sudden changes and nonlinear oscil-
lations. Moreover, it is easy to manage recursively (see Ljung and
Soderstrom 1983):

3: = ﬁt—l + Px.(y — X;Bt-l) (A.3a)
1 PixX/ P,
==\Pyy - A3
P=s [P, - x,’P,-lx.] : (A3b)

starting from suitable initial values 8, and Py. The resemblance of
Algorithms (A.2) and (A.3) is apparent; they differ only in the way
the matrix P, is prevented from tending to 0. The method used by
the latter is more adaptive and depends only on a scalar A.

As stated before, the approach of local regression is similar to
nonparametric estimation; however, in the case of exponential
weights there exists a functional interpretation. Because Algorithm
(A.3) may be obtained from (A.2b) by setting 62 = X and

1 P xx;P_,
Z=|-—-1}| P -
' ()‘ )[ o+ X;P:—lxt]
t ) -1 1! -1
= (E X"’X.-x,f) - (— % xfx{) ,
i=1 A i=1

the “implicit” assumption of parameter evolution underlying EW-
RLS is the random walk (A.1a) with nonstationary input e, ~ IN(0,
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&) and a, ~ IN(O, )\). In any event, the meaning of the implied
state-space system is difficult to understand, and we prefer to regard
local regression as a method consistent with the nonparametric as-
sumption 8; = f( Vi, Xe—x; k > 0).

CLs

In econometrics the coefficients of system (A.1) are estimated
efficiently by the method of maximum likelihood (see Pagan 1980).
The log-likelihood function has the form

—log L(0?, 3)

=% | I P
o [E p + E log(o? + x,P,-,x,)] , (A4)
which is the sum of two incompatible cost functions: the sum of
squared standardized innovations, and the sum of their variances
in logarithm. The filter (A.2) provides the necessary tool for com-
puting the elements of (A.4), but introduces further coefficients to
estimate: 8y and P,.

Now, if the KF approaches the steady-state (i.e., P, = P, constant)
and the regressors x, are fixed, then the variance of innovations
may be approximated by a constant. Consequently, (A.4) becomes
proportional to the sum of squared prediction errors (see Grillenzoni
1993). This functional is defined autonomously in the CLS esti-
mation (see Tjostheim 1986) and may be used for selecting the
coefficients of (A.3), namely

T
Qr(\, Bo, v0) = X (3 — xiBi-1)%, (A.5)
t=1
in which the algorithm of computation is (A.3) itself with 8o = 8
and Py = vl
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