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Summary

This paper develops statistical techniques for building multilinear (or polynomial)
ARMA models for nonlinear time series. In particular, tests for linearity use sample multi-
correlation functions; stability properties are investigated by means of simulations;
structure identification is based on subset regression; parameter estimation follows a
pseudolinear regression approach; forecasting algorithms adopt deterministic extrapolating
functions. Throughout, an extended numerical application on the IBM data-set of Box and
Jenkins (1976) illustrates and checks the various solutions.
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1. INTRODUCTION

In Grillenzoni (1993) a general class of multilinear (M) ARMA models for
nonlinear time series was introduced. It extendes the bilinear representation of
Granger and Andersen (1978) by including general monomials of lagged input (the
disturbances) and output (the series) in the regressors. The resulting framework
unifies and encompasses other nonlinear schemes proposed in the literature, such
as the polynomial AR models of Mittnik (1990) and the quadratic MA models of
Hinich and Patterson (1985).

The advantage of the multilinear approach, with respect to other nonlinear
models discussed in Tong (1990) and Granger and Terasvirta (1991), is in retaining
a genuine regression structure, i.e. it is linear (or at least pseudolinear) in the
parameters. This feature enables one to apply typical recursive algorithms of
standard time series analysis in the procedures of identification, estimation and
forecasting.

The central purpose of this article is to provide further evidence of the validity
of the MARMA representation, with special reference to its forecasting ability. This
will be done in Section 6 with an extended numerical application to the IBM data-
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set published in Box and Jenkins (1976), and already investigated by Granger and
Anderson (1978) and Tong (1990). The paper also deals with other methodological
aspects, namely: the implemetation of test for linearity (Sec. 2), the analysis of the
conditions of stability (Sec. 3), techniques of subset identification (Sec. 4) and
adaptive estimation (Sec. 5).

2. TESTING

The preliminary step that must be taken in modeling a nonlinear time series,
istesting for its linearity. This means checking the existence of nonlinear relationships
in general, and next tentatively identify their typology in terms of classes of models.
Over the last ten years many linearity tests have been proposed in literature; their
general features can be summarized as follows: 1) Tests are usually based on
statistics of residuals generated by linear AR models, which represents the null
hypothesis H,,. 2) Tests can be classified into two groups, according on the fact that
they do or do not assume a specific class of nonlinear models (e.g. bilinear,
exponential, threshold) under the alternative.

It should be noted, however, that many of the tests that do not assume a
specific model under H1 implicitly refer to quadratic processes, i.e. to systems that
admit at most a second order Volterra expansion (see Keenan, 1985). Moreover,
many tests cannot be applied when no linear model can be specified under H, i.e.
when the series to be investigated is white noise (see Lukkonen et al., 1988). In this
case, theresort to “non-parametric’” methods becomes necessary. Such methods are
traditionally based on the analysis of higher order moments in the frequency
domain (see Brockett et al., 1988), which causes computational complexity,
difficulty of interpretation and low power. There exists, however, the possibility to
develop time-domain versions of such tests that may avoid these drawbacks. Some
results have been already outlined by Granger and Andersen (1978, p.87), Maravall
(1983) and Li (1984), using sample autocorrelations of squared whitened series.
More general developments are still possible.

A general test, A fairly general starting point for testing linearity stems from
the relationship between non-gaussianity and non-linearity. Linear non-gaussian
processes Simply arise by passing an input a, ~ IID (0,06 through a linear filter

Y(B)= E; o ¥ B*. Now assuming W= E(a,3 ) # 0, the typical situation is that

z, = ¥(B)a, haveathird order cumulant (bicovariance) function which s uniformly
non-zero, namely
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usz(i’j) = E[(z, —H, )(zr—i — MU, )(zt—j - .uz)] Hy Z.P ("

To test for the non-gaussianity of {z,} it is then sufficient to check if
U3(i,j)# 0 forany (ij). On the other hand, a test for linearity may be developed

on the linear innovations 4, = [z, -E(z,_1,2,, )] by checking if fj (i, j)=0 for
all (ij)=0.

More precisely, a general linearity test may refer to the multicorrelation
function

i) 'ulwrl i i E[ Qi - "" )]
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for any (i),...,i;)) # (0,...,0), where A,,, is a normalizing quantity for the
(k +1)-th order cumulant function. Various choices are available for A, such as, in
increasing order
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the most suitable in terms of cross-correlation interpretation is the second one.

The meaning of the above approach is that of reducing tests for linearity to
tests for the independence of linear innovations. This involves the estimation of the

filter Y¥( B), the generation of residuals 4,=%¥(B)"'z,, the computation of the
A -\ — _ T A .
statistics A, = H;] Qi s Ar =T 'ZmA, and finally one may obtain the sample
multicorrelations
T a
aA
ZM : - — 2 :L N{ 0, ! 1 (1.1)
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The approximate distribution (1.1) holds under the null Hy:z,=a,~IID, with

rk+l(il""’ik)=

E( "”)<oo and for T sufficiently large. The proof is similar to that for the

autocorrelations and may be obtained as in Hinich and Patterson (1985) or
Grillenzoni (1993), see the Appendix.
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The case study. To clear the above ideas we begin here the numerical
application of the paper. It deals with the IBM stock price series {Z,} published by.
Box and Jenkins (1976, p. 526) which consists of T'=369 daily observations during
the period May 17, 1961 - Nov 2, 1962. For such series, Box and Jenkins (1976,
p-239) have substantially confirmed the hypothesis of random walk, which is
widely diffused in financial data. Indeed, the ML estimation of the tentatively
identified IMA(1,1) model provided a non-significant MA parameter. For the
differenced series z, = (Z, — Z,_,), displayed in Figure 1, Tong (1990, p.260) has
detected non-linearity over the first 218 observations. He applied CUSUM-type
tests of Petruccelli and Davis (1986), assuming the existence of an AR(1) model
under the null. Now, since the series is nearly white noise there is the need for further
checks.
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Fig. 1: Plot of first differences of IBM stock price series.

Sample autocorrelations of squared series (in Table 1) has provided strong
evidence of non-linearity on the whole sample. Recall, in fact, that the approximate
distribution of these coefficients under the null is N[0,(1/368)12] = .053. Table 1
also provides the portmanteau test of McLeod and Li (1983) which adopts the Box-
Pierce statistic Qp(K)= 2::1 (T — k)r*(k); given the result (1.1) its approximate
distribution under the null is ¥%(X) . Finally, from the sample bi-correlations r,(i.j)
in Table 2, it is possible to obtain an evidence of nonlinearity which may be useful
in the identification of quadratic AR models.
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Tab. 1: Sample bi-tri autocorrelations of differenced IBM series.

Lag k 1 2 3 4 5 6 17 8 9 10 11 12
rZz_p) | -22 -19 -18 -19 -04 -11 -06 -0l -03 -1l -02 -08|Q(20)=106
rz,Z_) | 13 01 -02 -07 01 -07 -07 -02 -01 -11 -01 -03{Q(0)= 29
22 26 16 25 26 01 .11 06 05 20 20 .08 .150(20)=207

Tab. 2: Significant sample bi-autocorrelations r{z, (z,_;~z,_)l-

iljo 1 2 3 4. 5 6 7 8 9 10 1 12
1 12

2 -.10

3 15 ) .

4 12 .07

5

6 ) ) . )

7 . A4 . -16

8 -15 . . . ) . .

9 22 ) .18 . .12 .

10 .11 .10 11 . .19 . ) .o-1

11 . ) } ) . . . ) . . .
12 16 -15 -14 .13 . . . R & . )

3. REPRESENTATION

A natural extension of the ARMA model z, = (§z,_; +...+ ¢,z,_,+6ia,_,+
vt an,_ Jta, a -~ IN(0,6?%) toward a representation nonlinear in the varia-
bles, can be obtained by taking a general function z, = f{ x,)+ a, of its“regressors”
X, = [7-:-1 ,,,,_,,ar_q] ={x,} Now, assuming f(-) analytic (i.e. differentiable of

every order) around the origin x, = 0, we may expand it in Volterra series (see
Priestley, 1988 p. 92) obtaining

m

MARMA 2=+ 3| 0.3 B, (5x)[+an @ ~TD(0.07) a1y

j=tii=l =l

J
_ _d f(x,)
Xie S\ 2tk @-j | r=12..p; j=1,2..q * :Bi,...ij = ax' —
(Tl P ) x,=0
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where m = p +q. The order of the expansion n depends on the shape of f{-) and

requirements of accuracy, the coefficients {ﬁi.---i,»} are the Volterra kernels and
ﬁo =ﬂ0)~
Constraining n=2 we obtain a quadratic ARMA model which encompasses
many of the existing nonlinear processes having a “regression” structure
P q Fos P Q R S
z, =By + Z¢izr—i + Zejarfj + 2 Z Byz,_a,_;+ zza:jzr-izl-j + Zzaijar-ianj +a, (3.2)

i=l i=1 i=} j=1 i=1 j=I i=] j=1

where (nPR)<p, (5,0,5)<q and [¢,-,9 ,-;Ol,-,-,5,-j] are subsets of the coefficients
(B ﬂi}.] in (3.1). The above includes the bilinear models of Granger and Andersen
(1978), the polynomial MA and AR models of Hinich and Patterson (1985) and
Mittnik (1990).

A further extension of the multilinear system (3.1) concerns the time-

variability of the regression coefficients B, _; (¢). This feature arises from the

nonlinear representation whenever the function f{-) changes over time, either in
terms of its structure (heterogeneity) or variability of its parameters (evolution). In

both cases we would have z, = f(x,)+a,, and expanding f(-) around x,=0 for
each ¢ we obtain a representation (3.1) with deterministically varying coefficients.

A necessary constrain for modeling the process is that J3; i, (£) be smooth functions
of the time.

Stochastic Stability. Stability properties are suitable features for dynamic
models, since they determine the reliability of parameter estimators and forecasting
algorithms. As a definition of stochastic stability we adopt the principle that to
inputs {q,} bounded in probability, there must correspond outputs {z,} with the
same feature. While this condition may allow for the existence of some moments,
asymptotic stationarity is a stronger concept because anables the same moments to
have a constant expression.

To study these properties for complex nonlinear models, such as (3.1)-(3.2),
simulation experimemts are recommended. The simulation approach may also be
useful for checking the validity of parametric conditions established on simpler
models. In the following we summarize the results of Monte Carlo experiments
consisting of 30 indepentent replications of size 100,000 with input a, ~ IN (0,1)
and initial value z,=a,. All computations were carryed out with the MATLAB
package on a personal computer.
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Simulation 1.1t is widely recognized that polynomial AR models are explosive, that
is their region of stability in the parameter space is empty. Granger and Andersen

(1978, p. 28) have shown this situation for the process z L =Q, zfaH +a,; however,

in the simulation we have cheked that the model is stable for |od<.151 and may not
diverge for |oj< .185. Specifically, the mean value of the stability frontier was

o =171 with SE =.0085.

Simulation 2. It is well known that the bilinear process z, = Pz,_,a,_, +a, is second
order stationary if %0, <1, or |B|<1 if E(a,2 ) =1. Now, in our experiment we
have cheked that the model is stable for |$|<1.88 and may not diverge for

|/3| <1.91. In particular, the mean value of the stability boundary was B =+.1.896
with SE =.0077.

These findings partially contradicts well established results. Their motivation
arises from the fact that the input process is standard normal, therefore its
realizations are actually confined within finite bounds (+5.5). In general, given any
bounded input sequence with mean zero, if the “regression” coefficients are
sufficiently small and do not have the same sign, then nonlinear systems of type
(3.1) may be stable. Of some interest is the different way in which the models in

experiments 1 and 2 diverge: while z, = Otz,z_1 +a, explodes suddenly (see Figure
3a), the process z, = fiz,_,a, , +q, diverges gradually and for |B|>1 it may take

large values. Graphs of realizations of log|z| in Figure 2 show, however, that the
critical value 8= 1.90 has the same role as the unit circle in linear AR(1) models.

0 100 200 300 400 300 600 700 800 900 1000

Fig. 2: Realizations of loglz, = Bz _a _+a|for B=1.8 (—), 1.9 (=), 2.0 (- —).

[ A
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Apart from previous simulations results, there are sensible considerations that
may relax the need for finding conditions of stability: i} Stationarity properties are
certainly suitable features, but they are concerned with the asymptotic behaviour
of the models. In modeling real data, users typically deal with finite sample
intervals; moreover, many time series, mostly in economics, are non-stable
(explosive) in nature. ii) As shown in the analysis of linear AR models (see Rao,
1961), explosiveness has useful consequences for standard LS-ML estimators since
it increases their speed of convergence in probability. This property, named super
consistency, might be extended to nonlinear AR models of polynomial type, since
they retain a regression structure. iii) If the parameters vary with time (in a
deterministic or stochastic fashion), issues of convergence and stationarity do not
arise by definition. What becomes important is the non-divergence of the models,
which may be accomplished by the variability of the “regression” coefficients
itself. Specifically, as it may be shown in the case of linear models, or by simulation
2 with B,=(Ba, ), the stability region of time-varying models is larger than that
of their stationary versions. These statements may be cheked with further experiments.

Simulation 3. Under the same experimetal conditions as before, we have cheked
that the process z, =, zfa,_l +q, with parameter @, = —asign(a,), where the
function sign(x) = +,-1 forx>, <0, is stable for ¢<.20 and may not diverge for
a <.29. In practice, the mean value of the stability frontier becomes & =.254 with
SE = .021.
Simulation 4. To show the consistency of the LS estimator in the case of explosive
non-linear models we have applied its recursive version (RLS) to 4 independent
realizations of z, = -32;2—1 +a, ~IN(0,1). The graphs of a realization and of the
recursive estimates are given in Figure 3 (a,b) respectively. It is interesting noting
that the convergence of {&,} toward 0.3 is not disturbed by the sudden divergence
of {z,}.

Also conditions of invertibility may be investigated by simulations. This
property enables to obtain the input series {a,} from any bounded sequence of {z },
and is assential to the estimation of MA parameters. Anyway, even if conditions of

invertibility are not met, consistent estimators may still be implemented (see
Section 5).
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Fig. 3: (a) A realization of z,= 0.3z} +a; (b) Four RLS estimates of @ = 0.3.

4. IDENTIFICATION

A crucial phase in modeling a nonlinear time series is the specification of its
structure. With respect to the class (3.1), this requires the identification of the
monomials {y = Hilzﬁin;aﬁ,—} j=t..n» 1:€. Of the powers (k,,h}. For the
sub-class (3.2), which is more regular, two techniques developed for linear and
bilinear models might be used. In the first, by assuming a,~ IN (independent
normal), the orders are selected by minimizing some information criterion (IC).
The second one simply requires a,~1IID and selects models by investigating the
sample behaviour of same cumulant function.

Both these approaches are of limited practical value since they rely heavily on
the assumption that a regular multilinear system exists. By contrast, data are often
generated by subset models, which have coefficients spread at various lags. The
main consequences are that the estimation of information criteria may fail owing
to the presence of many non-significant and collinear terms, which make the
Hessian matrix associated with the non-linear estimator, ill-conditioned. Secondly,
analysis of the theoretical multicovariance functions, related to all the subset
alternatives of (3.1), is practically impossible and some patterns are shared by
different model structures.

The identification procedure that we now propose is inspired to the method
of subset regression and treats the multilinear model as the sum of independent
components to be identified separately and next recomposed. This approach has
been applied by Grillenzoni (1991) in the identification of other complex systems,
such as simultaneous transfer functions. With reference to (3.2) the method is as
follows:
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Step 1. The model is decomposed into five submodels. 1) linear [¢,, Oj ; 2) bilinear
subdiagonal [, i 5j]; 3) bilinear superdiagonal [, i > j1; 4) quadratic AR
Lo 5) quadratic MA [b',.j]. Since the nonlinear parts have the same
parametric complexity, acommon maximumorder D=(r=s=P=0Q0=R =)
is defined depending on the available data and requirements of parsimony.

Step 2. The linear submodel is identified in the usual way. For the others, all possible
elementary models of the type z=0z z +a, zt=[3ijztuia,_j+a,,
z,=5,.la,_,a, i+, with i, j=1,2...D, are estimated with nonlinear algorithms.

Step 3. The nonlinear submodels are identified by assembiing the most significant
of the elementary models and then by estimating the resulting structure and
dropping all non-significant terms. Finally, the global system (3.2) is identified

by recomposing the 5 submodels.

_ Theabove procedure induces amoderate overparametrization, but it drastically
reduces the number of terms to be considered and is suitable for subset models. In
any event, in the final estimation all non-significant monomial are identified and
deleted.

There are some questions related to the properties of estimates and the
reduction of intermediate computations, that must be discussed. i) Subba Rao and
Gabr (1984, p.287) have shown, by simulations, that nonlinear least squares (NLS)
estimates of the parameters of bilinear models are not normally distributed. This
rises a difficulty in evaluationg the significant monomials to be included (or
dropped) in the various phases. At Step 2, however, the significance may be easily
evaluated with an F-test on the reduction of the residual sum of squares (RSS). ii)
In order to reduce computations, the estimates at Step 2 of the models
z,= @z, 4, .+a, may bereplaced by the sample multicorrelations r,(i,j) (see Table

L ]
2). This approach might be extended to the bilinear components by focusing on the

“cross-correlations” between z, and Y =2,.,4,_;, where g, is the residual of the
model formed by the linear plus quadratric AR components.

The Application. In the differenced IBM series the linear component is
absent, because it is nearly a white noise. Letting the maximum order of the
nonlinear submodels be D =10, by means of Table 2 we have identified the
quadratic AR system

=-.584+.006z> , —.010z,_,z,, —.017z,_,z, o +.020z,_,z, o +.0092, ;2
‘ as @0y TV Tauy 1T tayy T8 Ty Tled Trggy T3t

. %9 . 4.1
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where values in parentheses are t-statistics and the total sum of squares to be

369 . . . -
reduced was zr_”z,z =18,740. In a simulation exercise consisting of 30

independent replications of size 10,000 with input a, ~ IN(O,\/15428/349), we

have checked that the above model is stable, with realizations lying in the band 145.
This property may be explained by the fact that the re gression coefficients are small
enough and have not the same sign. A useful consequence is that the model can be
used in forecasting.

5. ESTIMATION

The identification procedure outlined in the previous section has implicitly
assumed that an efficient estimator for multilinear models is available. If the
distribution of {a .} is known a-priori a natural candidate is the maximum likelihood
method; however, this assumption contradicts the formulation (3.1) where a ~IID.
In this section we adopt the nonlinear least squares (NLS) and the pseudo-linear
regression (PLR) approaches.

First, note that any subset MARMA model can be rewritten in “regression”

form as z, =8, +Z:=|ﬁjyﬁ +a, with y = H::l(x,-,)wﬁ ; now, setting
B =[B,.B,...B,] the NLS estimator is defined as

B =arg;nin[QT(ﬂ)=iaf(ﬁ)jl, aB=[-Fr®) &b

where y,(B) =[1,,...,] is the vector of “regressors”. The computation of j3;
(5.1) interms of Gauss-Newton algorithm, requires the analytical expression of the

gradient &(B) = da, /dp. Unlike linear and bilinear ARMA models, however, this

cannot easily be derived and optimization (5.1) must proceed by strictly numerical
methods .

Statistical properties of the NLS estimator applied to MARMA models are
difficult to analyse, even more than the probabilistic properties of the underlying
processes. Since higher order moments are involved, existence of stochastic
stability may not be sufficient to yield consistency; in any case extensive Monte
Carlo simulations are recommended. The problem of invertibility is more urgent
than that of stationarity, because it enables the iterative estimates to be computed.
Asmentionedin the Section 2, however, there exists the possibility of implementing
alternative algorithms. As in the linear case (see Hannan and McDougall, 1988), the
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basic idea is to make the input sequence {a,} observable, by estimating a “long”
polynomial AR model, next the monomials {y,} are generated and the vector B is
estimated by OLS. Since the initial estimation tends to converge even under non-
stability (see Figure 2), the resulting procedure may be consistent.

Pseudolinear Algorithms. The previous two-stage procedure introduces to
pseudo-linear regression. Following Grillenzoni (1993), this method arises from

approximating the gradient as &(f) = y,(B) and inserting its iterative expression

¥,(k) in the Gauss-Newton estimator; the final result is an iterative OLS algorithm
applyed to the model z, = By, +a,

. T -r
PLR B.(k+1)= [25’, (k)f’,(k)] 2. 3. (k)z, (5.2)
=1 =l

In the estimation of nonlinear models, this approach significantly reduces the
order of the moments that need to exist, on the other hand it does not provide a
minimization method. In practice, as shown in the linear context by Hannan and
McDougall (1988) or Grillenzoni (1991), the approximation of the gradient makes
the resulting algorithms not always consistent and generally inefficient.

Utilization of the PLR method should then be limited to the initial estimation
phase. Here, it represents a very flexible tool that may handle models of large
dimensions and quickly shows which of the monomials selected at Step 2 are
significant. There are other practical advatages that it is worth to discuss. i) The

estimator (5.2) may avoid the need for initial parameter values ﬁ, (0); what it really
needs is the availability of a vector §,(0) which may be generated by a “long”

polynomial autoregression. if) There are several stepsize mechanisms that may
improve the convergence of (5.2) with respect to k—oo. These include a moving

average of the parameter estimates f;(k) = —;—[ By (k) + B (k- 1)] or the use of the

“residualsofregression” g’ (k) = z, — ﬁr(k)’ j‘r:(k — 1) inthe generationof monomials.
"The second mechanism is computationally simpler.

The PLR approach is also useful in the adaptive estimation of the parameters
of time-varying models. In this case, questions of convergence with respect to
T—eo, do not matter and the tracking properties of PLR, allowed by the greater
computational speed, are preferable to those of accuracy of NLS. An adaptive
version of (5.2) may be obtained by discounting observations with exponential
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weights 0< AT~/<1; the recursive version follows by equating number of observations

and iterations (k = T) =t and proceeding as in the derivation of the RLS algorithm
(see Grillenzoni, 1991).

&)=z, - Bt-1Y5(t) (5.3a)
R(t)=A-R(1-1)+ $()$() (5.3b)
R-PLR A1) =Bz -1)+R(e) (1)) (5.3¢)
a(r) =z, - B1)'3(0) (5.3d)
6() = A-8(t-1)* +(1- A)a(r)a(r)] (5.3¢)

Ye+1)= {H; (zr+l—f)kij Hf:l ae+1- ,')"a' } G-

The terms &,,d, are the prediction error and the recursive residual respectively; the
factor 0 < A <1 by preventing R(f) from vanishing, enables parameter changes
(B -B.,) to be tracked. Finally, 6(1)* provides an adaptive estimator for the
variance ¢ of the input sequence, because #(¢) =[a(¢)a(r)]"? are standardized
innovations.

In order to avoid numerical problems in the algorithm (5.3), the direct
calculation of the inverse P(r)= R(r)™! may be replaced by

_ Ll p _y_ PU-DIOIEO)Pe=1) | 1, _
P(t)—E[P(t 1) T 30 Pl -150) ]_ ;{[P(t D-A@)] G4

This implementation avoids blowing up of P(¢) and for A= 1 it explains why in

Section2 the RLS estimates of the unstable model z, = az2 , +a,,|a] > 0.2 converged
despite the fact that the corresponding OLS estimates were not asymptotically
definite.

The implementation (5.4) also enables to extend the algorithm (5.3) toward
a more flexible and adaptive design. Following Grillenzoni (1994), the estimator
which unifies weighted RLS, Kalman filter and stochastic approximation schemes
is given by

Ble) = Bt - 1)+ pP(1)3(1)ar), Ro)=A, (5.50)

1
P(r)= ;P(tml)—aA(t)wll,,, P(0)=7,I, (5.5b)
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where 0< o, A<1 and 0<},, i< <o aretracking coefficients, ¥, B, are parametric
initial values and A(¢) is defined as in (5.4) with A= 1. As for the algorithm (5.3),
it is important noting that no assumption of parameter evolution is made, therefore
(5.5) is consistent with approach of non-parametric regression.

Algorithm (5.5) involves (5+#) unknown coefficients & = [ WAY Y0 B ]

whose heuristic design may decrease the statistical performance of the adaptive
MARMA model with respect to its version with constant parameters. An estimation
criterion for § analogous to (5.1), is based on the prediction errors

CLS § = arglglin[QT(b') = ia(:)z ] a(r) =z, - 3(ty Bt -1)] (5.6)

where calculation is provided by (5.5) itself. This framework sets up a highly
nonlinear estimation problem, whose properties may be investigated in the context
of the conditional least squares (CLS) theory (see Hall and Heyde, 1980, p.172).
From this theory, consistency of 3"_ may be established if the filter (5.5) is

exponentially stable, thatis if 0 <, A<l and 0 < %, u < e, Finally, to avoid
problems of parametric identifiability, it may be usefull to reduce the dimension of

6 by introducing the constraints o =4, v, =¥,/10°.

The application. CLS estimates of the coefficients of algorithm (5.5) with the
constraint ¥, =¥, /100 and applied to the model (4.1) without the constant f3,, are
given in Table 3. Calculations were carried out with the Gauss package.

Tab. 3: CLS estimates of the coefficients of the algorithm (5.5) applied to (4.1),

% A o H Bu Ba Bs Bs -Bu Bw Buo B Or

0114 9596 .8139 -325[.0471 -.0141 .0466 .0096 .0103 -.001 .0472 —.026 | 12,653
29 Ma 05 1W12H| 62y 15 69N (.2 14 09 I5H GD

Since the Q-statistic in (5.6) has the same nature as that in (5.1), under the
assumption g, ~ IN we may use F-tests for checking the time-variability of
MARMA parameters. In our application, the reduction of Q., from equation (4.1)

to Table 3 (about -18%), yields a statistic £} ,,c =16.3 which is 1% significant.
Finally, Figure 4 shows the trajectories of the recursive estimates generated with the
algorithm (5.5) and the coefficients of Table 3. Specifically, (a,b) show ﬂ;) , while
(c,d) display the diagonal elements of P(¢).
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Fig. 4: Recursive estimates of model (4.1). (a,b) ,B(t), (c) diagP(1), (d) log[diagP(!)].

6. FORECASTING

It is well known that the optimal predictor (in MSE sense) of a future value
z,, pI>0 ofaprocessisgivenby Z (/) = E[z, alzeziy - ] this conditional expectation,
however, is linear in z,_, only under Gaussianity. In general, the derivation of the

exact expression of the optimal multistep (/>1) predictor of a nonlinear model is
not a feasible task and one has to resort to suboptimal solutions.

Inthe general representation z, = f(x,)+a, we easily find that 2,(1)= f(x,);

therefore a simplified multistep predictor may be obtained by extrapolating the
identified function in the form of a deterministic difference equation, namely

2,(l)=f,{...fz[f,(x,)]...}=f[§,(l—1)...z,+,_p,a,...a,+,_q] (6.1)
The application of this approach to the multilinear model (3.1) involves

approximations of the type E[z,+,z,+,,z,+‘, lz,z,._, ] =2 (1z,(h)z,(k),(I,h,k) > 1,such
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as in the one-step-ahead forecast. Hence, when lagged values of {a,} are present in
the “regressors”, very biased results may be generated and other solutions should
be attempted. A possible strategy consists of combining optimal forecasts generated
by sub-models.

A practical solution must also be adopted for the variances of prediction errors

i) = E[a,z,k,|z,z,,_l ] For I =1 we clearly have 67(1)=o?, but for general
prediction horizons we must resort to empirical estimators based on past forecasts
Z_(I), namely

!
5} (1)= X [zew =20 fe=D) [>1 62)
=1

The Application. Given the variability of parameters of the previous models,
their forecasting performance turned out to be disappointing. To account for the
latent non-stationarity we have then developed the nonlinear modeling on the last
part of the IBM series, starting from ¢ =272, Specifically, model identification and
estimation were carriedouton {z,.,...Zyg5...0.. z;55} and out-of-sample forecasting
on {zy,,...2569}; the small overlapping of the two sets is motivated by the need of
avoiding re-estimation of the models at each change of forecast origin (see below).
Applying the procedures of Sections 3 and 4 we have obtained four submodels
which are reported in Table 4 with their iterative estimates. Since NLS estimation
substantially confirms the results of the PLR one, we have a concrete evidence of

the validity of the latter (implemented with stepsize).

Tab. 4: Sub-models identified on the sub-sample {z,,.......2, | 2y, --+--Z37,}-

a) Quadratic AR ¢, Oy Oy G410 Ogs %0 50 RSS
OLS .0409 0484 0233 -0324 -0225 0329  -.0448 2030
t-stat. 2.7 3.9 @.n (-2.4) -2.7) (2.8) 3.6)

b) Quadratic MA 6, 8,7 55 O bes 8o : RSS
PLR .0221 -.0363 0213 -0192 .0383 -.0422 : 2825
NLS 0243 -,0258 0143  -0324 0426 -.0634 . 2750

c) Bilinear SuP. B, B B Baro Bss Bio Bo1o RSS
PLR 0557  -.0243 L0428 0412 -.0340 0246  -.0467 2360
NLS 0706  -.0339 0535 0342 -0170 0255 -.0411 2280

d) Bilinear SuB. B, Biio Bsio Bsro Bs, Brio Byro RSS
PLR -.0221 0257 -0505 -.0333 0227 0332 .0390 2640

NLS -0272  .0155 -0575 -.0140  .0290 0301 .0457 2580
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Analysis of the prediction ability of the various models has been done with mean
absolute forecast errors (MAFE), defined as MAFE (/if) = ™! ZL: |z, (1) -z

where n=10 is the size of the mean, ¢ = 350 is the first forecast origin, /=1, 2...10
are steps ahead. In practice, the forecast origin was shifted 10 times, starting from
=350, and each time 10 predictions were computed. To avoid model re-estimation
at each shift, we have included 5 out-of-sample observations in the identification
sub-sample.

The graphs of MAFE (11350),/=1...10, corresponding to the models in Table
4 with suboptimal predictor (6.1), are given in Figure 5. Consistently with the value
of the residual sum of squares (RSS), the best performance is provided by the
quadratic AR model.

t+i+l| ’

(<}

©
»
b

t 2z 3 4 & 6 7 8 8 0 1 =z s 4+ 5 8 1 & 35 1

Fig. 5: MAFE (!| 350) of the Random Walk (——) and of Models in Table 4 (- - -).

In order to improve the above statistics and to approach the nonlinear ARMA
model (3.2), we have assembled the quadratic and the bilinear components in Table
4. Results in Table 5 show that the quadratic MA model is nearly “absorbed” by the
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AR one. This is due to the lag structure of the two schemes, which is similar (so that

the terms z, .z, ,, a,_,a, , may be competitive), and to the optimal order of the
models in Table 4, that approaches 7.

Tab. 5: Partial unification of the models in Table 4.

a) Quadr. ARMA  j,, Bio  Bspo B Buro B, Bss  Byo RSS
PLR 0393  .0371 -0383 -0231 .0356 -.0506 -.0348 .0748 1830
NLS 0408 0445 -.0378 -0208 .0327 -.0449 -0423 .0661 1780

b) Bilinear B Bio Baro Boo Bs, Bss : ’ RSS

PLR 0470 -0432 0638 -0568 -.0499 0482 . . 2375
NLS 0577 -0849 .0484 -0660 -.0706 .0455 . . 2275

The forecasting ability of the models in Table 5 is shown by Figure 6 . For the
bilinear scheme we have used PLR estimates since the NLS ones significantly
worsen the long term performance. This result is similar to overfitting and is due to
the capability of efficient numerical methods to reach parametric solutions that are
near the boundary of the invertibility and stationarity regions. By contrast, PLR
algorithms provide estimates that are suboptimal, but have the advantage of
stability. Moreover, as shown by Granger and Terisvirta (1991), in nonlinear
models the fitting (in-sample) performance may not be indicative of the forecasting
(out-of-sample) ability.

Finally, the general model (3.2) is identified by combining the submodels in
Table 5; parameter estimates are given in Table 6. Even in this case, the quadratic
AR component tends to absorbe the bilinear one and the optimal model order is 7.

8.0 8.0

7.54

70

6.5

8.0

5.54

5.0

49 49

Fig. 6: MAFE (/| 350) of the Random Walk (—) and of Models in Table 5 (- - -).
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Since NLS estimation is developed on the results of the PLR identification, one may
suspect that the dominance of the quadratic AR model is due to the suboptimal
properties of the latter. In other words, there is the possibility that PLR accords
priority to the “linear regressors” z, Z,;- To check this impression we have re-
introduced into the model of Table 6, the bilinear monomials discarded in the PLR
identification and we have re-estimated by NLS. This experiment has confirmed the
non-significance of many z,_a, _j and the capability of the term z,_,a, ,to yield non-
invertibility.

Tab. 6: Unification of the models in Table §.

Model 3.2) B, 7 %0 s %0 %0 0y L RSS
PLR 0544 0386 -0467 -.0221 0386 -0544 -0512 0793 1832
NLS 0519 .0394 -0418 -.0205 0386 -.0441 -.0476 0740 1788

The forecasting ability of the model in Table 6 is shown by Figure 7a . Since
it seems inferir to that of Figure 6a, there is the doubt that the strategy of
recomposing sub-models is not suitable in forecasting. In other words, it may be
preferable to directly combine the forecasts of quadratic and bilinear models. This
is done in Figure 7b and the results are significantly better.

The forecasting results displayed in the previous figures are good enough,
especially because they are produced by the suboptimal agorithm (6.1). This has
alsothe advantage of yielding stability when the underlying process is stochastically
unstable. In particular, in a simulation exercise we have cheked that the model in
Table 6explodes for a,~IN(0,5) where 5~(1832/73) 12: however, the corresponding
forecasting function (6.1) converges (see Figure 8).

7.5

7.04

6.5

6.0

854

4 b
50 45 v v v v
1 4 3 4 S ] 7 8 8 10 1 2 3 L) 3 8 7 8 ] 10

Fig. 7: MAFE, (/]350) generated by the Random Walk (—) and by : (a) the model in Table 6;
(b) the combined forecasts of the models in Table 5.
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Fig. 8: Convergence of the forecasting function of the model in Table 6.

7. CONCLUSIONS
From previous fitting and forecasting results, we have seen that quadraticAR,
quadratic MA and “pure” bilinear models have a similar performance. Given the
numerical complexity of the nonlinear estimators (NLS, PLR), and their uncertain
statistical properties, the general suggestion of this paper is that nonlinear time
series modeling must preferably be developed in terms of polynomial AR models.
In particular, it is worth recalling that identification and estimation of these schemes
only require correlation functions and linear algorithms (OLS, RLS). Further, since
a general modeling must also face the problem of the time variability of the
parameters (and in Section 5 we have seen that this involves highly nonlinear
estimators (CLS)), it is sensible to keep the basic representation linear in the
parameters. Finally, the forecasting functions (exact and approximate), of polynomial
AR models are persistently non-zero, allowing for long-run predictions. However,
since this may not imply a good forecasting ability, in the case of stable time series
it is necessary to check and control convergence of the forecasts.
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APPENDIX: PROOF OF RESULT (1.1)

Assume {z,} zero mean and consider its sample bicovariance function

(i, j)=ry (i, ) 0', y,with Yeij =(z, 2, ’) For | = max(h,k,i,/) > 0 small we may
set (T-D =T, sothat

Cov[c3(h,k),c3(i, j)]zCovH 22 2, p 2ok Zz Z, 2. ,)]

t=] s-—l

1
2

M-
M- S

Cov[(z,z,_,,z,_,, )(zszs—-rzs“ )]

ﬂ

il
-~

t=l §

]

1
%)

M~
Nl

B{[(zat10) - (2 i) - 6 )]}

N&

-
]
—
[
i
—~

E[zlzt—hzr kzszs lzs j]_:u3(h’k)ﬂ3(i’j)

’ﬂ,\,ll' _
M-~
M~

H
-
t

t

—

By 6-th order stationarity, and changing the summation variables as
r=(t-s) € (-T,+T)and T=t € (1,7) we may get

1 v . . .
Cov[cs (k)¢5 (i, )] —22 E Ug(t = s, bkt —s+it—s+ j)— ps(h k)50, )
1=l s=I

=0z Z[[.t6(r,h,k,r+i,r+j)—u3(h,k)l-l3(i,j)]‘2N:(l)

r==T =1

To obtain the variance of the bicovariance estimators, set h=i, k=j then

Var[c3(t j) 2#6(" i, j,r+ir+ j)— s, J)

r——T
and under the null hypothesis H,:z, = a,, one may easily obtain

.. 1 e
Var[c3(l,1)]=-1:#6(0,1,,],1,]) [Z Z,_,Z,_}]"_

where, by stationarity, a 0-lag term in f; (-) was omitted.

The distribution of (1.1) easily follows by noting that 7,0, = ¢® andthat series
{zz,z,;} isanasymptotically independent sequence under the same condition for
z,(see White, 1984). Hence, the central limit theorem for asymptotically independent
random variables can be applied to show that



278 C. Grillenzoni

L
T-max(i,j)-¢;(i,j)) — IN(0,6°) as T oedi,j<oo
Hy

Finally, as a corollary, the distribution of the portmanteau statistic Q,(-) easily
follows.
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PREVISIONI NONLINEARI DI SERIE TEMPORALI FINANZIARIE

Riassunto

Questo articolo sviluppa tecniche statistiche per costruire modelli ARMA multilineari
(o polinomiali) per serie temporali nonlineari. In particolare: i test di linearitd usano
Jfunzioni di multicorrelazione campionarie; le proprieta di stabilitd sono investigate per
mezzo di simulazioni; la identificazione della struttura dei modelli é basata su regressioni
parziali; gli algoritmi di previsione adottano funzioni di estrapolazione deterministiche.
Attraverso il lavoro, una estesa applicazione numerica al data-set IBM di Box e Jenkins
(1976) illustra e verifica le varie soluzioni.

Parole Chiave: Serie Temporale IBM, Funzioni di Multicorrelazione, Modelli Nonlineari,
Regressione Pseudolineare, Algoritmi Recursivi.



