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Abstract

This paper develops adaptive non-parametric modelings for earthquake data. Non-parametric
techniques are particularly suitable for space–time point processes, however they must be adapted
to deal with the non-stationarity of seismic phenomena. By this we mean changes in the spatial
and temporal pattern of seismic occurrences. A set of non-parametric tests, kernel density and
regression estimators are proposed to study the space–time evolution of earthquakes. The implied
solutions, by respecting the unidirectional nature of time and minimizing prediction errors, are
naturally oriented to forecasting. An extensive application to the Northern California Earthquake
Catalog (NCEC) data-set, starting from 1930, illustrates and checks the approach.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In essence, a space–time point process is a random collection of points whose coor-
dinates provide the instant and the location of an event. These events may be binary or
may be marked, in such a case an additional variable is involved. Unlike continuous
space–time processes, which can be represented as multi-indexed sequences of random
variables {Zst}, in a point process the indices themselves constitute part of the process,
namely {(s; t; Z)k} (see Schoenberg et al., 2002). Forecasting the spatial location s, the
occurrence time t and the mark Z of a future event is the main target in many ;elds
of research.
Statistical methods for point processes have been extensively developed in the context

of seismology. Their ;ndings, however, may be useful for other disciplines, such as
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economy (modeling birth-death of ;rms) and epidemiology. In studying earthquakes,
the main concern is in estimating the intensity and strength of the phenomenon. By this
it is meant the frequency with which events are expected to occur at a particular point
and their mark in neighboring points. Such estimates may provide useful indications
on the location and the size of future occurrences.
A number of sophisticated models have been provided for representing the intensity

function. Many of these are extensions of models only developed in the temporal
dimension. The two major approaches are the self-exciting scheme, for events which
tend to be clustered, and the self-correcting scheme, for regular and inhibitory point
patterns. The space–time extension of the self-exciting scheme of Hawkes has been
pursued by Vere-Jones (1992), Rathbun (1993) and Ogata (1998); recent re;nements
are proposed by Zhuang et al. (2002). The resulting models can represent swarms of
earthquakes due to aftershock activity.
Structural models have proved their eGectiveness over short periods of time and in

homogeneous areas, where common physical causes are operating. When ;tted to more
general data sets, however, they tend to provide estimates which lie outside plausible
ranges and are sensitive to the inclusion of new data (see Rathbun, 1993). This is due
to the fact that seismic phenomena are not only characterized by strong randomness,
but also are intrinsically non-stationary in space and time. By this we mean both spatial
migration of seismic sites and time-variability in the rate of occurrence of signi;cant
events. Such pattern changes usually produce anomalous observations which perturb
parameter estimates.
A practical alternative to structural models is represented by non-parametric smooth-

ing methods. Density estimators can easily manage space and time variables simul-
taneously and can measure non-stationary intensity functions. Similarly, regression
smoothers can estimate the strength function, which has not received much attention
in the literature. The Kernel approach, in particular, is very Iexible and through the
sequential implementation (Grillenzoni, 2000) it can manage time-varying functions
without using time as an explicit variable.
Non-parametric estimation of the intensity function has already been pursued in

seismology, see Vere-Jones (1992), Bailey and Gatrell (1995) and Stock and Smith
(2002). However, the proposed solutions do not consider the temporal dimension or
do not respect its unidirectional nature, because treat time as an additional spatial axis.
As a consequence, they estimate the present value of the functions by also including
future events. As we shall see, time-irreversibility has also important implications on
the criteria for selecting optimal bandwidths.
As regards non-parametric regression, it may also be a useful alternative to Kriging

techniques for interpolating surfaces. Its advantages are computational simplicity and
adaptability to time-varying problems; on the contrary, inclusion of time in Kriging
smoothers is a diJcult task. At the pure spatial level, Yakowitz and Szidarovszky
(1985) showed superiority of Kernel regression with respect to Kriging; but more
recently, Hobert et al. (1997) have mitigated this conclusion.
The article is organized as follows: To better involve non-specialized readers, Sec-

tion 2 provides a general description of the data-set which regards the application of
the paper. Section 3 investigates space–time dependence tests based on point pattern
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analysis. This is a necessary step before discussing any modeling issue. The core sec-
tion of the paper, Section 4, develops sequential weighted kernel estimators. Finally,
Section 5 discusses specialized aspects of space–time smoothing, such as recursive
implementation and forecasting.

2. Data description

Seismic data may be considered as the realization of a marked space–time point
process. This is de;ned by a sequence of (c + 2)-variate random variables {sk ; tk ; Zk}
ordered by time; in particular: k ∈ I+ is the index (it belongs to positive integers);
t ∈R+, tk ¿ tk−1 is the time variable (unidirectional); s∈Rc, c = 1; 2; 3 is the spatial
variable (c is its dimension); Z ∈R[0;10] is the magnitude of an event on the Richter
scale. If c = 3, we have the full 3D space, therefore s′ = [x; y; z] are the coordinates
of the epicenters: x is the latitude, y is the longitude (both are usually expressed in
degrees) and z is the depth (in meters or km). On the other hand, for c = 1 one has
the projection on a particular axis.
To better involve non-specialized readers, we introduce in advance the data set con-

cerning the application. The Northern California Earthquake Data Center (NCEDC) is
a joint project of the University of California Berkeley (UCB) and the United States
Geological Survey (USGS). It is a long-term archive and distribution center for seis-
mological and geodesic data for Northern and Central California; at the Internet address
http://quake.geo.berkeley.edu/ an on-line ftp service is available for retrieving
such data in ASCII format.
Most general catalog is that of the UCB Seismological Laboratory, which includes

events even of magnitude Zk = 0:1 on the Richter scale, starting on year 1910. Un-
fortunately, these data are incomplete, in that from 1910 to 1930 only 17 events were
available; in other periods, only events of magnitude 2.5 or higher were recorded;
;nally, the depth coordinate z was not computed before 1984. For reasons of homo-
geneity, our analysis only regards data in the period Jan 1931–Dec 2000, with minimum
magnitude 2.5 and without the depth component. As a consequence, s′ = [x; y]∈R2

and the sample size N became 17868.
Figs. 1 and 2 provide descriptive plots of the seismic data. Fig. 1 shows the geo-

graphic location of epicenters for increasing levels of magnitude of the events. Fig. 2
performs the same exercise for the occurrence time. It may be noted that events tend
to cluster at both levels, although clustering in space is much more apparent. In the
next section we formally address issues of statistical tests.
It is well known that location of earthquakes tends to follow tectonic faults, which

may be geologically identi;able. In this context, geographic prediction becomes a rela-
tively simple task. In Fig. 1(c) one may note the presence of at least 4 diGerent spatial
clusters which surround the Sacramento Valley. The nearly absence of epicenters in
this area makes it similar to an hurricane eye.
Forecasting the occurrence time is a more challenging issue. At a given location, a

typical feature is that big earthquakes are preceded by a quiescent time and are followed
by a swarm of smaller events. The matter, however, is not so simple because according

http://quake.geo.berkeley.edu/
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Fig. 1. Geographic location of epicenters of seismic data for diGerent levels of magnitude. Latitude and
longitude are expressed in degrees.
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Fig. 2. Plot of event strength over time for the selected sample, N = 17868. Magnitude is on the Richter
scale and time is in number of days from Dec 31, 1930.
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to the self-exciting theory, a signi;cant earthquake increases the rate of occurrence in
the short term, but according to the strain-release theory it decreases the rate in the
medium term. Bolt and Schoenberg (2000) have encompassed the two dynamics in
their SELC model, which concerns restricted areas.
For the needs of subsequent analysis the variables (x; y; t) should be expressed in

decimal units. Time was then expressed in number of days from Dec 31, 1930 and
latitude and longitude was transformed in meters, using the Universal Transverse Mer-
cator (UTM) projection. This transformation was also required because the area of
investigation is wide and calculating distances on coordinates in degrees leads to dis-
tortion. The UTM system can be viewed as a Cartesian scheme, in which the x-axis
is the equator and the y-axis is a meridian passing from a speci;ed point. In our case
we selected the meridian passing through the city of San Francisco.

3. Space–time dependence tests

In this section we consider the problem of testing for space–time dependence in
seismic data. This is an important topic in the analysis of point processes and is
preliminary to any modeling attempt. A peculiar feature of earthquakes is that they
exhibit two opposite type of dependence: one leading to clustering (on a small scale
and aftershock activity) and the other leading to spacing out of events (on a wider
scale and main shocks). In Figs. 1 and 2, one may appreciate existence of this feature
both at the spatial and temporal level; it is certainly interesting to test what kind of
dependence scheme tends to prevail.

NN analysis: Dependence analysis has been well developed in spatial and temporal
contexts separately. For example, at spatial level the nearest neighbor (NN) analysis
examines the distances between each point and the closest point to it, and then compares
these to expected values for a sample of points from a complete random pattern. The
basic test statistic is the average distance

d̂N =
1
N

N∑
k=1

dk ; dk =min
h�=k

[
dkh =

√
(xk − xh)2 + (yk − yh)2

]
;

where {xk ; yk} are spatial coordinates of the kth event, and dkh is the Euclidean distance
between points k and h.
In order to treat time dependent events and their possible non-stationary patterns,

one can use the sequential weighted mean

d̂t =


 ∑

k:tk6t

�t−tk




−1 ∑
k:tk6t

�(t−tk ) dkwk ;

dk =
√
(xk − xk−1)2 + (yk − yk−1)2; (1)

where the concept of nearest neighbor now regards the time dimension only. In statistic
(1) the factor �∈ (0; 1) gives more weight to recent observations, whereas the weights
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wk ¿ 0 give more or less weight to the distances, according to the magnitude of the
corresponding events. A suitable choice is wk = ZkZk−1= QZ2t , where QZt = t−1

∑t
k=1 Zk ,

because {wk} would move around 1.
Alternatively, one may consider the nearest neighbor approach with respect to all

events that occurred before t, and including time in the distance measure. This choice
is motivated by viewing the data-set as organized in a 3-way array, where time is the
vertical dimension. Moreover, using the adaptive weights

w̃kh = ZkZh=W̃ t ; W̃ t =
∑
k:tk6t

�t−tk ZkZh

/ ∑
k:tk6t

�t−tk ;

where th ¡ tk , it is easy to verify that the statistic (1) becomes

D̂t =


 ∑

k:tk6t

�t−tk ZkZH




−1 ∑
k:tk6t

(�t−tk ZkZH )DkH ;

DkH =min
h¡k

[
Dkh =

√
(xk − xh)2=�2x + (yk − yh)2=�2y + (tk − th)2=�2t

]
; (2)

where H is the value of h corresponding to the minimum of Dkh and �2x , �
2
y, �

2
t are

the variances of the coordinates. Notice that standardization makes homogeneous, and
therefore summable, spatial and temporal distances.
The value of the discounting factor � depends on the memory of the process; esti-

mates in the next section indicate, on average, 0.955. This value is moderate, but such
that the sequence �k decays rapidly. Application of statistics (1) and (2) with �=0:96
to the NCEC data provided the results in Fig. 3. Probability distributions of {d̂t ; D̂t},
under the null hypothesis of random pattern, were derived with Monte Carlo simula-
tions based on 1000 replications and a Kernel smoother. Such distributions are nearly
Gaussian with means and variances that depend on the choice of � and on spatial and
temporal boundaries of the data-set shown in Figs. 1 and 2.
Analyzing Fig. 3, we may note that statistic (1) shows local independence of events,

whereas statistic (2) con;rms persistence of space–time dependence. These results are
not contradictory because they come from qualitatively diGerent methods. In particular,
statistic (1) by working on temporally ordered data, is sensitive to events that belong to
diGerent seismic sites, and these may easily be independent. A common feature of the
two statistics is their high value at the beginning (where the catalog is less complete),
which may mean existence of an inhibitory pattern. Instead, in the remaining part of
the sample, smaller distances prevail which are a symptom of clustering. Finally, in
comparing Figs. 2 and 3(a), one may note that non-signi;cant values of (1) occur in
periods of “low” seismic activity.

ST correlation: It is interesting to compare these results with those of existing
tests for the analysis of point processes (e.g. Odland, 1988, Chap. 7). The most sim-
ple of these calculates the correlation coeJcient between space and time distances of
each event with respect to the previous ones. Given the distances Dskh = [(xk − xh)2+
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Fig. 3. (a,b) Time path of statistics (1) and (2) with � = 0:96, together with 99% critical regions obtained
from their simulated distributions under the null (c,d).

(yk − yh)2]1=2, Dtkh = |tk − th| the weighted covariance is given by

�st =
2

(n− 1)2

n∑
k=2

∑
h:th¡tk

Dskh Dtkh wkh; (3)

where the weights wkh = ZkZh= QZ2n keep account of the magnitude of the events.
Given the large number of observations in the NCEC data-set and the need to check

the time-variability of statistics, we applied (3) to sub-samples of size n = N=70 and
to the data of each year. Numerical results are reported in Fig. 4: as we see, there is
evidence for a signi;cant correlation of space and time distances, although results on
data per year are more stable.

Knox test: The Knox (1964) approach is used to test for the existence of a signi;cant
cluster within certain spatial and temporal bounds: Ds∗, Dt∗. First, it counts the number
of point pairs in a 2 × 2 contingency table, then it calculates the P-value under the
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Fig. 4. Space–time correlations computed on sub-samples (a) and data per year (b).
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Fig. 5. Time-path of statistic (4) computed on sub-samples (a,b) and data per year (c,d), and for small (a,c)
and large (b,d) distances. Ds∗ is in km, Dt∗ is in number of days and the critical P-value (dotted line) is
10%.
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assumption of random pattern as generated by a Poisson model:

Pv= P(x¿ n11 | �0) = 1−
n11−1∑
x=0

(e−�0�x
0=x!);

�0 = [(n11 + n12) · (n11 + n21)]=n0; (4)

where n11 is the number of pairs in the ;rst cell, i.e. such that (Dskh6Ds∗kh) ∩
(Dtkh6Dt∗), and where distances are de;ned as in (3). The quantities n12; n21 are
the number of pairs in oG-diagonal cells, and n0 is the total number of pairs in the
table. In this approach, it is clear that the null hypothesis of complete random pattern
is rejected for large values of (4).
As in formulas (1)–(3), we weighted pair counts by the magnitude of the corre-

sponding events; moreover, we applied (4) to sub-samples of size n=N=70 and to the
data of each year. Results are reported in Fig. 5: as we may see, there is a signi;-
cant time-variability of statistics, and space–time independence may occur within small
bounds: Ds∗ ¡ 30 km and Dt∗ ¡ 30 days.
Following Ogata (1998) and Pievatolo and Rotondi (2000), given a main shock

of size 46Z6 6, the spatio-temporal window which may include events due to af-
tershock activity (which therefore are dependent), has radius Ds∗ = 50 km and span
Dt∗ = 100 days. In Fig. 5(a) these limits are considerable lower and independence
of events may be encountered. Dropping events which fall within the window, is a
complex and controversial issue, discussed in Ogata (1998).
In conclusion, all methods developed in this section con;rm existence of a pos-

itive relationship between occurrence time and spatial location of earthquakes. The
self-exciting theory seems then supported by data and this legitimates further modeling
attempts, parametric as well as non-parametric.

4. Adaptive non-parametric smoothers

The statistical properties of a point process are entirely characterized by its joint
density F(s; t; Z). The intensity function is de;ned in conditional form as f(s; t |Ht),
where Ht={(sk ; tk ; Zk); tk 6 t} is the history up to time t. In the self-exciting approach
f(·) is modeled as �(s)+

∑
k �(‖s− sk‖; t− tk), where �(·) is the background rate and

�(·) is the infectivity function. Because �(·) does not depend on t, it may be modeled
as a stationary Poisson process. What distinguishes the various self-exciting approaches
is the parametric form of �(·), see Ogata (1998).
Given the diJculty in ;nding a satisfactory expression for �(·) and problems in

;tting it to data, one may resort to the non-parametric approach for estimating f(·).
Main problem is the de;nition and the treatment of time, which has not received much
attention in the literature. For example, Bailey and Gatrell (1995, Chap. 4) and Stock
and Smith (2002) applied Kernel smoothing to seismic data as if events occurred at
the same instant, obtaining static risk maps. Inclusion of time, however, is useful
for depicting changes in the pattern of the phenomenon, so as to provide more fresh
information.
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Density: Kernel density estimators can measure the intensity of a point process
in space, namely the expected rate of occurrences per unit area. Adaptation of the
Nadaraya-Watson smoother to time-varying situations can be obtained as in (1), by
considering the estimator in sequential form and then weighting observations:

f̂ t(x; y) =
1

�1�2


 ∑

k:tk6t

�t−tk




−1 ∑
k:tk6t

�(t−tk )K1

(
xk − x
�1

)
K2

(
yk − y

�2

)
wk; (5)

where K1;2(·) are the kernel functions and �1;2 are their bandwidths. With respect to
static smoothers, the weights �k=

∑
k �k have the same role as the term 1=N , whereas

the weights wk keep account of the relative strength of each event. Typical form is
wk = Zk= QZt , where QZt is the sample mean computed at time t. Alternatively, using the
adaptive mean Z̃ t =

∑
k �t−tk Zk=

∑
k �t−tk , the estimator (5) becomes

f̃ t(x; y) =
1

�1�2


 ∑

k:tk6t

�t−tk Zk




−1 ∑
k:tk6t

(�t−tk Zk)K1

(
xk − x
�1

)
K2

(
yk − y

�2

)
:

(6)

In the application of non-parametric methods to time-varying problems, there is the
tendency to use kernel smoothers even for the time component, namely to replace the
term �(t−tk ) with the two-sided ;lter K3[(tk−t)=�3]=�3 (e.g. Robinson, 1989). This is not
correct because it involves future observations, whereas present ones only depend on
past events. However, to see the relationship of estimator (5) with a 3-variate smoother,
let us consider the approximation

∑
k �k ≈ 1=(1 − �), and replace the kernels K(z)

with �|z|=C, where C = (1+ �)=(1− �) is a normalizing constant. With these changes,
the estimator (5) becomes

f̂(t; x; y) = (1− �1)
(1− �2)
(1 + �2)

(1− �3)
(1 + �3)

∑
k:tk6t

�(t−tk )
1 �|xk−x|

2 �|yk−y|
3 wk: (7)

Design of smoothing parameters 0¡�2; �3¡ 1 is simpler than that of 0¡�1; �2¡∞;
however, in the multivariate spatial context they induce a marked diamond-shape pro;le
in the density estimate.
Optimal design of the smoothing coeJcients �; �1; �2 in (5)–(7) might be obtained

with classical cross-validation methods. Given the unidirectional nature of time, how-
ever, a more sensible approach is to focus on the predictive performance of kernel
estimates. In principle, given the impulsive nature of the density function of a point
process, one could refer to the criterion

∑
k [1−f̂ k−1(x=xk ; y=yk)], where f̂ k−1(·) is

the density estimate based on the ;rst k − 1 observations. In practice, given a suitable
grid for t; x; y we consider a more smoothed loss function

V1(�; �1; �2) =
∑
t

∑
x

∑
y

[f̂ t(x; y)− ht+m(x; y)]2; (8)

where ht+m(·) is the bivariate histogram of relative frequencies computed on weighted
events in the interval [t+1; t+m], with m moderate. Seismologist believe that a value
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Fig. 6. Kernel estimates of the intensity at four instants of time. They are generated with (6) and �= 0:97,
�= 43 km. Spatial coordinates are in the UTM system; the y-axis passing through x= 0 is the meridian of
San Francisco.

m=100, namely 3 months, is suJcient to rise independence in signi;cant earthquakes,
see Ogata (1998) and Pievatolo and Rotondi (2000).
Minimization of criterion (8) on the NCEC data-set was computationally demanding;

for this reason we restricted analysis to a subregion bounded by longitudes (−128;−116)
and latitudes (33,43), centered on San Francisco city. Using ;lter (6) with Gaussian
kernels, �1 = �2, and a 70 × (60 × 50) regular grid for t; (x; y), we obtained the
values �̂=0:97, �̂=43 km. Next, with ;lter (6) we generated the estimates in Fig. 6.
These show a signi;cant space–time variability of the intensity function, although four
persistent clusters can be recognized.

Regression: Typical regression analysis for point processes consists of evaluating
the dependence of the magnitude on space and time components. This provides the
expected value of the magnitude of future events or may measure the diGusion of the
strength of past events. As for the intensity function, this is useful for building maps
of seismic risk. In this context, we assume a model of the type

Zk = gk(xk ; yk) + ek ; ek ∼ IID (0; �2); (9)
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where gk(·) is a time-varying non-linear response function. For this scheme, the kernel
estimator corresponding to method (6) is given by

ĝt(x; y) =

∑
{k:tk6t} �(t−tk ) K1[(xk − x)=�1]K2[(yk − y)=�2]Zk∑
{k:tk6t} �(t−tk ) K1[(xk − x)=�1]K2[(yk − y)=�2]

: (10)

It is useful to compare model (9) with Zk = g(xk ; yk ; tk)+ ek , that explicitly includes
time as a regression variable. Although the two schemes are related, model (9) is more
general, because it admits heterogeneity and evolution of the regression function g(·).
This is the main reason that motivates the implementation with the forgetting factor �.
It follows that a suitable estimator for g(x; y; t) can be obtained from (10) by replacing
the weights �(t−tk ) with the kernel K3[(tk − t)=�3].
Finally, one may consider the general model Zk = gk(xk ; yk ; tk) + ek and try to es-

timate it with ;lter (10), after the inclusion of the kernel K3(·) in the numerator and
the denominator. This component has the same role as the weights �(t−tk ), therefore
there should be no substantial diGerence in the performance of the two ;lters. Indeed,
empirical applications provided a medium diGerence of about 0.023 on the Richter
scale, which is less than 1%. Hence the model is redundant.
Although ;lter (10) has fundamentally a role of interpolator, it may provide infor-

mation on the mark of future events at any point. To enhance its forecasting vocation,
one should design its smoothing coeJcients with a sequential cross-validation criterion.
Denoting with ĝk−1(x; y) the estimate (10) based on the ;rst k − 1 observations, the
loss function may be outlined as follows

V2(�; �1; �2) =
N∑

k=2

[Zk − ĝk−1(x = xk ; y = yk)]2; (11)

where ĝk−1(xk ; yk) provides the prediction of the magnitude at time tk and location
(xk ; yk), for which the actual value Zk is available.
Minimization of criterion (11), under the same conditions as Fig. 6, provided the

estimates �̂ = 0:94, �̂ = 65 km, which are similar to those of the density case. With
these values and the ;lter (10) with Gaussian kernels, we generated the surfaces in
Fig. 7 at four instants of time. As a comment, one may note a marked space–time
variability of the regression function and a signi;cant dependence of the magnitude on
the axis South-East, North-West.
Some interesting remarks can be done in comparing Figs. 6 and 7. For example,

intensity of seismic activity usually declines rapidly in space, whereas the same does
not hold for the diGusion of strength. Moreover, there are locations of relatively high
intensity that are not associated with a comparable large strength (as in the area of San
Francisco at the center of the images). This might suggest the existence of an inverse
relationship, or at least independence, between the two seismic features. Coherently,
the theory of gradual strain-release claims that the larger the number of events, the
smaller their magnitude. In designing space–time maps of seismic risk, both intensity
and strength functions should be considered; the ;rst one indicates the location of an
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Fig. 7. Regression estimates (10) obtained with � = 0:94, � = 65 km, at four instants, together with recent
observations. View is from South-East to North-West.

earthquake, the second one estimates the associated magnitude. As a result, several
classes of seismic sites can be outlined.

5. Special aspects of space–time smoothing

Recursions: The importance of implementing ;lters (5)–(11) with the weighting se-
quence �(t−tk ), rather than with a Kernel function, emerges when data are equally
spaced in time. For point processes, this regularity condition can be achieved by
aggregating data in weekly, monthly or yearly series. More precisely, given a
suitable spatio-temporal grid for (x; y; t), seismic events must be classi;ed in the cells
of the resulting 3-way array and their strengths cumulated as

Zxyt =
∑

{k:(t−1¡tk6t);(x−1¡xk6x);(y−1¡yk6y)}
Zk :

These provide a measure of the total stress that occurs at a given space–time location.
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Fig. 8. (a) Epicenters of earthquakes expressed in UTM coordinates together with the axis of projection;
(b) Distances of epicenters from the Sacramento axis.

A problem in this approach is that magnitudes on the Richter scale are expressed in
logarithms, therefore they are not additive. This problem is not suGered by the energy
(E) which is related to the magnitude (M) in the following way: log10 E = c+ 1:5M .
Hence, by means of simple transformations one can build a regular series for the
strength variable. Once this goal is achieved, using the approach of Grillenzoni (2000),
;lters (5) and (10) can be arranged in recursive form as

f̂ t(x; y) = �f̂ t−1(x; y) +
(1− �)
�1�2

∑
k:t−1¡tk6t

K1

(
xk − x
�1

)
K2

(
yk − y

�2

)
wk;

(̂t(x; y) = [Zxyt − ĝt−1(x; y)];

ĝt(x; y) = ĝt−1(x; y) +
(1− �)

�1�2f̂ t(x; y)

∑
k:t−1¡tk6t

K1

(
xk − x
�1

)
K2

(
yk − y

�2

)

×(̂t(x; y); (12)

where (̂t(x; y) is the prediction error of total strength at location (x; y).
Computational advantages of this framework are apparent, and the role of the for-

getting factor � in tracking non-stationary patterns is enhanced. A result that cannot be
achieved by using a kernel function for the time component. Prediction errors have spe-
cial importance because can be used in designing smoothing parameters, by minimizing
the loss function

V3(�; �1; �2) =
∑
t

∑
y

∑
x

[(̂t(x; y)]2: (13)

This is similar to a sequential cross-validation criterion, where the omitted observation
is always the present one.

Projections: With frames such as those in Figs. 6 and 7, one can build dynamic
graphs (movies) for viewing the entire evolution of earthquakes. To have a synthetic
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Fig. 9. Plot of density (a) and regression (b) functions of earthquake data projected on the Sacramento axis.
Estimates are performed every 500 days, and the view is from North-East to South-West.

representation of the phenomenon, one may work with projections of the epicenters
on a suitable axis ℵ, as suggested in Ogata (1998). In practice, one can substitute the
spatial coordinates (xk ; yk) with the Euclidean distance pk = d(Pk;ℵ) of any epicenter
Pk from the de;ned axis.
In our application we selected the axis which runs in the middle of the Sacramento

Valley in direction NW–SE, see Fig. 8(a). As a convention, we attributed negative
sign to the coordinates of epicenters placed on the right of ℵ, see Fig. 8(b). This is
the contrary of that adopted by the UTM system, which gives negative sign to the
x-coordinate of the points placed on the left of San Francisco meridian.
Smoothers for data represented in this form can be obtained from (5)–(10) by re-

placing the functions K1(·); K2(·) with K[(pk−p)=�]. Using a time interval of 500 days
and the cross-validation estimates �̂ = 0:95, �̂ = 45 km, we obtained the densities and
the regressions in Fig. 9. Both estimates con;rm that Sacramento axis is a watershed
between two distinct seismic zones, the most active of which is on the Paci;c Coast. In
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Fig. 10. Space–time evolution of peak intensity: (a) location of the peaks of f̂ t(x; y) estimated every year
(+), (∗) denotes most signi;cant peaks; (b) time evolution of the coordinates of signi;cant peaks; (c) spatial
migration of signi;cant peaks; (d) temporal distribution and size of signi;cant peaks.

particular, Fig. 9(b) shows a sort of “alternation” in the peaks of the functions f̂ t(p),
ĝt(p) of two groups as time goes on.

Peaks migration: Monitoring the space–time evolution of peak intensity of earth-
quakes may be useful to understand the dynamics of tectonic faults. In practice, this
may be accomplished through the pattern analysis of the modal values of the kernel
densities f̂ t(x; y; ). Choi and Hall (2000) have provided statistical conditions that must
be ful;lled for such estimation; in particular, these require a sort of square integrability
of the underlying probability functions.
In our application densities were estimated every 365 days, and their modes were

plotted in Fig. 10(a). Obviously, it is sensible to investigate the space–time trajec-
tory only for the most signi;cant ones. Now, given the threshold  = 5=1011, only 17
peaks exceeded this value and their locations are plotted in Fig. 10(b–d). Fig. 10(c), in
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particular, shows that migration mainly follows the NW–SE direction (i.e. the Sacra-
mento axis), and three distinct seismic sites can be identi;ed.
From Fig. 10(d), which plots peak values against time, one may identify quiescent

periods. These arise when seismic activity goes below a given threshold intensity  . In
this investigation, also strength/magnitude should be taken in account, but estimators
(5)–(7) actually do so through the weights wk . With respect to  =5=1011, the longest
quiescent period occurred from 1957 to 1977.

Forecasting: Smoothing methods developed in the previous section are useful for
building maps of seismic risk. While the density (6) provides information on the lo-
cation of events, the regression function (10) estimates their magnitude. Therefore, as-
suming quasi-stationarity of the point process, prediction of future events may proceed
in two steps: ;rst ;nd (x∗; y∗)=argmax f̂ t(x; y) from (6); then calculate Z∗=ĝt(x∗; y∗)
from (10). Prediction of the occurrence time t∗ can be obtained from an autoregressive
model on intervent periods rk :

rk = (tk − tk−1) = hk(rk−1) + uk ; uk ∼ IID (0; �2u):

This can be estimated non-parametrically by the ;lter

ĥk(r) =

[
k∑

i=2

�(k−i)K
(
ri−1 − r

�

)]−1 k∑
i=2

�(k−i)K
(
ri−1 − r

�

)
ri (14)

and the prediction becomes t∗= tk+ ĥk(r=rk). Notice that purely interpolating models,
such as rk = h(k) + uk , are not useful in forecasting.
The last remark suggests that a general approach to forecasting should be based on

autoregressive models for every component of the seismic phenomena:

Zk = gZ
k (Zk−1) + eZk ;

xk = gx
k(xk−1; yk−1) + exk ;

yk = gy
k (yk−1; xk−1) + eyk ;

tk = gt
k(tk−1) + etk ; (15)

where for latitude and longitude we have assumed existence of dependence. This could
be assumed also for other components, but for spatial coordinates this is a crucial point,
in view of the issue of peaks migration.
Notice that each equation of system (15) can be estimated with ;lter (14). This,

in turn, can be written in recursive form (12) because index k provides a regular
sequence. In this case, the optimization criterion (13) can be expressed in terms of the
prediction errors (̂vk(�; �)=[vk − ĝv

k(v=vk−1)], for any component v=Z; x; y; t. Analysis
of statistical properties can be found in Grillenzoni (2000).

6. Conclusions

This paper has developed non-parametric techniques for analyzing space–time point
processes. A major advantage is that they do not require speci;cation of structural
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models, which are suitable only when data come from homogeneous seismic zones.
On the contrary, data often concern wide geographical areas and long periods of time,
where there are changes in spatial location of events and variability in the rate of
occurrences. In these cases, parametric models do not ;t well, which can be reIected
by parameter estimates that lie outside admissible ranges. Non-parametric smoothing
methods have been designed as exploratory tools of data analysis; however, they have
great Iexibility and adaptability. In this paper we have developed sequential and re-
cursive solutions which are suitable in the case of non-stationarity point processes. We
have proved their eJcacy in building dynamic risk maps and we have outlined their
potential use in forecasting.
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