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MULTILINEAR MODELS WITH TIME-VARYING PARAMETERS

Carlo Griﬂenzoni

1. INTRODUCTION

There is no compelling reason to expect social and environmental time series
to conform to dynamic models which are linear in the variables. Such schemes,
usually having a finite number of nonlinear parameters, are used for ease of
statistical analysis, just as the assumption that variates are normally distributed
is made for the convenience of mathematical treatment and interpretation.

Time series analysts have begun to turn their attention to the study of
nonlinear stochastic processes. Granger and Andersen (1978) and Subba-Rao
and Gabr (1984) have developed a class of models, called Bilinear ARMA, that
extends the ARMA representation in the same way as the dynamic bilinear
systems (see Rugh, 1981). In mathematical terms, the rationale of the approach
is given by taking a second order Volterra expansion of the unknown stochastic
function that generates the data.

Other models for nonlinear time series exist, e.g. exponential and threshold
autoregressions (see Priestley, 1988; Tong, 1990, for surveys and comparisons)
and, recently, neural networks (see White, 1989). However, the advantage of
the bilinear approach is that the resulting equations retain a regression struc-
ture so that many algorithms designed for linear models can be applied. On the
other hand, its fundamental limit does consist in excluding from the represen-
tation nonlinear terms which are produced by Volterra series expansions of
higher order.

An attempt to fill this gap has been provided by Hinich and Patterson (1985
a,b) with a class of quadratic innovation models having a nonzero bicovariance
(third order cumulant) function. Another extension will be proposed in this
paper with a multilinear representation that includes all possible monomial
combinations of lagged input and output. This approach is suitable for cover-
1ng, in a parsimonious manner, the higher order moment information contained
in a nonlinear time series. At a theoretical level, its derivation has the same
starting point as the state dependent models of Priestley (1988).

The central purpose of the paper is that of providing a model-building frame-
work for multilinear ARMA models. Special attention will then be devoted to
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the problems of identification of the dynamic structure (order selection) and
estimation of the parameters from sample data. Since empirical models often
have irregular (subset) structure and their coefficients are time-varying, suit-
able technical solutions are given by partial multicorrelation functions (in iden-
tification) and recursive pseudolinear regression in estimation (see Solo, 1978).
Loosely speaking, these are generalized moment methods which possess suboptimal
properties and are easily implementable.

The paper is organized as follows: section 2 derives a multilinear representa-
tion for nonlinear time-series and discusses problems related to its stationarity
and stability. Section 3 deals with methodological problems related to nonlinear
estimation in the case of time-varying parameters. In section 4 techniques of
structure identification based on the inspection of cumulant functions are de-
veloped. Finally, section 5 performs an extended numerical application an a real
data-set and makes comparisons with other nonlinear models.

2. REPRESENTATION

A natural extension of the autoregressive moving average (ARMA) model
(¢lz, R~ T 08, 1 +...+6,a,_J) +a,a,~IN(Q, o?), toward a rep-
resentatlon nonlmear in the vanables, can be obtamed by considering a general
nonlinear function f(-) of the vector of “regressors” x; = [z;_1, ..., ..., 4, _ 1= {x;}
(see Priestley, 1988, p. 92)

NARMA  2,=f(z, 1 o %y &g 1s s 8y ) +4;, 2,~1ID(0, 0?) (2.1)

With this formulation {4,} play the role of innovations of the process {z,} and
f(x,) that of projection on the past history: E[z,l +_1=(2,_1, 2,_5, ...)], in which
{x,} has the role of state-vector since contains all the relevant information
necessary for prediction.

Instead of proceeding as in the derivation of the state dependent model
(SDM, Priestley, 1988, p. 93) - i.e. by expanding f(-) in a first order Taylor
series about any fixed point x, - we now consider a general expansion about
the origin in terms of Volterra series. By assuming f(-) analytic (i.e. differenti-
able of every order) around x,=0, we may get the expansion

m m m
=B, + Zﬁtxzt + Z Zﬁq % + Z 2 Zﬁiikxitxjtxkt +
i=l j=1 i=1 j=1 k=1
the various sums define, respectively, linear, bilinear, trilinear, ... forms in the
pseudoregressors %, i =1, 2, ..., (p + g) = m. The explicit constant term B, = f(0)
may have a significant role in the dynamic behaviour of the resulting multilinear
framework, expecially when a finite series has to be used in practice. Here, the
Multilinear ARMA model simply arises by truncating the above expansion and
taking any subset structure:
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=1 g+ . +hyy=f i=1

a, ~ 1ID(0, %) - (22)

% ={2 8oyt i=12,..,p+q,

_ )|
Mx,,...

By, ke,

mit |xt=0

the degree of the expansion # depends on the shape of f(-) and requirements of
accuracy, the coefficients {8,  , } are subsequences of the Volterra kernels.
In certain cases, the justification of (2.2) also stems from ordinary series expan-
sions, as in the following. :

Example 1. Consider the simple model z,=z,_, exp(-4,_,) + 4, From the ex-

pansion exp(—a)= 2(—1)"‘ak /B! we get, by truncation, 2,=2,_-2,_14,_1+
k=0
2,_1@%_1/2 - 2,_14 _,/6 + @, which is a multilinear model. ‘
Model (2.2) can also be viewed as a direct generalization of the Bilinear
ARMA system, e.g. taking » =2 we may get the quadratic model

' r 5
2, =Py + (i 02, +_i 64, ; + > Zﬂifzt—iat-i +

i=1 j=1 i=1 j=1

P ﬁ R S
PP AT ) 5:','“:—:'“;-,')* 4 (2.3)

i=1 f=1 i=1j=1

where (r, P, R)<p, (s, Q, $) ¢ and [¢,, 6; ;] are subsets of the coefficients
[B; B;). Quadratic terms like (z,_;z,_ ,-S, (@,_;a,_;) were excluded from the
bilinear representation by Granger and Andersen (1978) on the basis of the fact
that they may raise difficult problems of stationarity and invertibility. However,
Hinich and Patterson (1985 a,b) have shown, on real economic data, the effec-
‘ R §
tiveness of quadratic innovation models of the type z, =Y, Y 8,4, ;4, ; +4;.
i=1 j=1
Unlike the Bilinear ARMA (see Kumar, 1986), this class always generates
nonzero third order cumulants (i, /) = El(z, - 1) (z,_; - ) (2, _ =Wl u= E(z)
(bicovariances) and thus it is a candidate to represent more complex processes.
A further generalization of the multilinear framework (2.2) concerns the
variability of the regression coefficients over time: Bo(#), B, . &, (f). This
feature arises from the nonlinear representation (2.1) by assuming that the
function f(-) changes over time, either in terms of its structure (heterogeneity)
or variability of its parameters (evolution). In both cases we would have

2;=f{x,) +a, and expanding in Volterra series f(-) for each # we may get a
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representation (2.2) with deterministically varying coefficients. It should be
recalled that deterministic is not synonimus of smooth, since Bi,, ..., 1, (#) may
not be functions of ¢, being simply sequences in #. -

Stationarity. Stability properties are suitable features for dynamic models, since
they determine the reliability of the forecasting and control rules as well as
consistency of the parameter estimators, As a general definition of stochastic
stability we adopt the principle that to inputs {4,} bounded in probability there
must correspond outputs {z,} uniformly bounded in probability. While this
condition may allow for the existence (finiteness) of some moments, asymptotic
stationarity is a stronger concept since it enables the same moments to have
constant asymptotic expressions. On the other hand, strict stationarity does not
presume the existence of any moment, since the densities associated to {z,} may
be Cauchy with constant parameters. o . '
In past years, most of the theoretical research in nonlinear time series has been
concerned with finding parametric conditions for the existence of convergent solu-
tions to the various models. Specifically, given a,~ IID, if there exists a unique
measurable function g: R — R such that z,=g(e,, 4,_,, 4,_,, ...) almost surely for
all =0, 1, 2, ..., then the process {2,} is strictly stationary and ergodic (see Stout,
1974, p. 182). Note, by contrast, that stochastic stability simply requires that for
any input bounded in probability the solution gf4,, 4,_, ...) does not diverge.
Recently, a general technique of analysis of the ergodicity has been exploited
by Tong (1990, chap. 4), assuming that the nonlinear models be representable
in terms of a vector Markov chain x,=f(x,_ ;) +e, with f(-) analytic and
e;~ IID(0, Z < e). Unfortunately, this feature does not hold for multilinear
models, and therefore the Tong’s method cannot be applied to equations (2.2)-
(2.3). o
- Even restricting the treatment to bilinear ARMA models (i.e. P<= Q=R =5§=0
in (2.3)), compact parametric conditions of stationarity have been established

only for particular orders (p, ¢, 7, 5). For the superdiagonal model z, = ﬁ: 02+
‘ i=1

+i Biz.— By + a, with E(a}) = 0% < oo, that written with a vector notation

. 1 P

’=
becomes z,= ¢z, _, + Bz, _,4,_, + 4, Bhaskara-Rao, Subba-Rao and Walker (1983)
have obtained the following conditions '

stationarity: A4 (®®®+B®Bo) <1 ' (2.4a)
invertibility:  B}E(z,_,z)_ )B, < 1 (2.4b)
where @' =[¢ : I,_J,B=I[p: O.P‘ 1] and A,,,. (") denotes the spectral radius. If

(2.44) is satisfied, then the equivalent markovian representation z,=®z,_, +
+Bz, 12, 1+ca, with ¢/=(1:0,_,), admits the multilinear MA solution
ok
z, =3, [](®+Ba,_;)a,  +cq, that converges in mean square for all £, Analo-
k=1 ;=
=1
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gously, under (2.4b) there exists a unic function b : #°—» R such that 4, = h(z,,
Zy_1s%;_ 3, -..) converges with probability one for all ¢. .

Following this approach, Pham (1985) and Lip and Brockwell (1988) have
derived stationarity constraints for a general bilinear model, which are very
complicated and difficult to check. Anyway, even though conditions (2.4) seem
more transparent, their importance remains of “limited” practical value in view
of the following remarks: (1) it is not clear what they actually mean in terms of
system parameters' {¢;, B;;}. For example, it can be shown that stationarity in
mean is ensured by A, (®) < 1, and this is clearly equivalent to the stability of
the AR polynomial ¢(B), but what are the parametric consequences of (2.4b)?
(11) They are not concerned with cumulants and higher order moments involved
by nonlinear algorithms of estimation. Conditions for the &-th order stationarity
of bilinear models could lead to severe requirements on their parameters, dif-
ficult to fulfill in practice. Two examples better illustrate these points.

Example 2. Let z,=Pz,_sa,_,+a, with 2> h > 0; in this case condition (2.4b)
means f§°- E(z2_,) < 1. Squaring z,_, we get the difference equation E(z2_,) =
= BPo?E(z?_ ) + 0% if the condition of stationarity (2.4a) holds, i.e. fPo?< 1,
the asymptotic solution of this equation leads to the invertibility requirement
Foif(l - PPod <1, ie fo?<.5. ~ :

Example 3. Consider the above example with a,~IN(0, 6?) gaussian; having
E(z,_44;_4) =0 taking fourth moments, we get E(z/) = (B*36%E(!_,) + 30*.
Solving for this difference equation, a necessary condition for the 4-th order
stationarity of {z,} becomes f?02 < 1/N3 =~ .6. As for invertibility this condition
is stronger than (2.4a). ' ,

When autoregressive components are present, the constraints tend to be-
come even more severe. For example, in the model z,=¢z,_, + fz,_,4,_, +4a,
the existence of 4-th order moments requires [¢* + 6(¢B0) + 3(Bo)*1 < 1 (see
Sesay and Subba-Rao, 1988). It is then clear that conditions of stationarity for
complex non-linear models not only are difficult to establish but may not exist
at all - that is; the region of stationarity in the parameter space might be empty,
or nearly so.’ ,

These comments tend to discourage the analysis of the stability properties of
fulti-linear models (2.2)-(2.3). Granger and Andersen (1978) have heuristically
shown the virtual nonstationarity and non-invertibility of the schemes z,=
=azi_y+4, z,=842_, +a,; but, unless the contrary is proved, one cannot
exclude that suitable properties may hold, even though locally and for particu-
lar realizations, for the quadratic model (2.3). With respect to the nonlinear
system (2.1) , if | Fx)l<llx, ie. £() is a contraction mapping, the process {z,}
is stochastically stable. Examples of this kind are given by systems that can be
reduced in the form of rational transfer functions, e.g.

- Pz 4,

<l1.
1+ 62, 40,

(1+6z_4, 1)z, =(ax - Pz, _ya,_, J2,_p +a,(1+ 62,4, ,),
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However, these models are nonlinear in the parameters and thus require com-
plicated algorithms of identification, estimation and forecasting. The peculiar
feature of representation (2.2) is given by its regression structure which allows
for direct application of many recursive procedures of standard time series
analysis. v

Nonstationarity. Realistic considerations that may mitigate the picture of un-
certainty outlined so far, are given by the following remarks: (a) Stationarity
properties are certainly suitable features, but they are concerned with abstract
asymptotic behaviour of the output of the models. In modeling real data, users
typically deal with finite sampling intervals and many observational time series
(mostly in economics) are nearly explosive in nature. (b) As shown in the
analysis of linear AR models, stability properties are sufficient but non-neces-
sary conditions for the existence of consistent estimators of the parameters.
Paradoxically, conventional least squares and maximum likelihood methods
improve their speed of convergence in presence of roots on or outside the unit
circle (see Rao, 1961), although they do not retain asymptotic normality. (c) If
parameters of the models are time-varying, issues of convergence and stationarity
do not arise by definition; moreover, the changé of the “regression” coeffi-
cients may have a stabilizing effect on the behaviour of the output {z,}. Spe-
cifically, even if the region of stationarity of the constant parameter model is
empty, or nearly so, there may exist sequences of time-varying coefficients {p,}
which force {z,} to be bounded in probability.

Example 4. Situations of this kind can be illustrated by simulations. In 10
experiments of sample size 100,000 (which are equivalent to 1000 replications
of length 1000) we have assessed that the quadratic process z,= az?_, + 4, with
2o =0 and 4, ~ IN(0, 6?) tends to overflow for || >.16. However, if the model
is time-varying with parameter function ¢, = ¢ sign(e,), where sign(x) = +,- 1
for x>, <0, the critical value becomes o, > .26. In practice, there are infinite
trajectories of {a,}, completely laying outside the region of stability, which
confine {z,} within finite bounds.

In the sequel we shall use the additional degree of freedom represented by
the variability of the coefficients for enlarging the region of stability of the
multilinear models and for weakening the parametric conditions of existence of
their moments. '

Assumptions A. Consider the class of processes (2.2) with deterministically
varying coefficients {B,} and distribution functions F,(:). Then, for every input
{a,} bounded in probability [i.e. suptP(|a,| =o0) = 0] , there exist trajectories of
{B;} such that the output {z,} is an asymptotically independent and a K-th order
process. In notation this means:

¢(m) = sup, sup,,|F(z,1, ees z,ﬂlz,l cmr o Ry ) — Flzys oy z,ﬂ)l -0

as m oo (A1)
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supPllz) 22) = 0(1/2X*® as |zl 500 with §>0. (A2)

Condition (A1) is a particular version of the so-called @-mixing property (see
Stout, 1974) and is satisfied by taking ¢(m) = O(1/n") with > 0. Condition
(A2) enables the existence of moments of order £ <K (see Laha and Rohatgi,
1979, p. 38), that is sup,E |z,| <o for all k <K. For identification purposes we
also need the following regularity conditions.

Assumptions B. For any model that satisfies Conditions (A), the sequence of
coefficients {B,} is bounded and has a well defined time-average behaviour,
namely:

N
= = . = . 1
0<IB=EB,) <, with E(B,)= lim [WEB'J’ t=12,... (B1)
Moreover, it enables the process {z,} to be@uasi-statiomry of order K, that is:
=k =k 1 ok
0<l|g, =EGzF) <o, with E(zf)= lim [ﬁZE(Z‘ )], k<K "~ (B2)
N—oo :

It is important to stress the structure of the asymptotic average operator E()
since it has a fundamental role in defining suitable parameters for off-line
inference.

Forecasting. We conclude the section with some issues of forecasting in multilinear
models. Given a model and the set of information J, up to time ¢, the task is
to find the expression of z,(J), the predictor of z,, , optlmal in MSE sense. It is
well known that

2,(0) = argminE{lz, ;- 2(0) | 3, = Elz,, | %,]

but as shown in the bilinear context the calculation of this expectation is
strongly affected by the presence of nonlinear regressors such as (z,_,4,_,),
b < k. These difficulties increase in multilinear systcms, s0 that suboptimal and
pragmatic solutions must be sought.

In the general nonlinear process (2.1) we easily find'2,(1) = f(x,), therefore a
simplified multistep predictor can be obtained by extrapolatmg the identified
‘function in the form of a deterministic dlfference equation, namely

t(l) "f[{-'-fZ[fl(x; ---} —f[-e;(l 1)’ reey zt+]-p’ IR at+l—q] .

The application of this approach to the multilinear model (2.2) involves ap-
proximations of the kind Elz,, 2, 42, 1|31 = 2,(02,B)2,k), (, b, k) > 1, such
as in the one step a head forecast. However, when lagged values of {4,} are
present in the “regressors”, bad results may be generated and other solutions
mtust be attempted. In practice, the above strategy corresponds to combining
forecasts generated by sub-models.
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Example 4. Consider the model z,=02%_, + fz,_ 12:, »+a, The optimal one
step ahead predictor is 2(1)=(z,,; - 4,,,); similarly 2,(2) aE[z,+1|£§,]+
+ BElz, , (|3 Z,, where E[2} 1|Fj’] EI( OLZ? + ﬂz Rt - 1%+ 200} + ﬁztzt 1)4“1 +,
+a2,1|S] = (azf + Pzz,_)? + 0%, hence 2,(2) = a2,(1)2+acr + B2 (1) -
Prediction based on sub-models gives 2,(2) = 2,2) - ag?.
A pragmanc solution must also be adopted for the variances of ‘prediction

“errors 0°(/) = Ela’ +1|3,] For /=1 we clearly have 4%(1) = d‘"z but for general
predlctmn horizons we must resort to empirical estimators based on past fore-
casts Z.(/), namely

()= Z[zm ~ 5 (PIe-0,  I>1

7=1

3. ESTIMATION

The identification procedure that we outline in the next section will require
the existence of an efficient estimator for the parameters of multilinear models.
If the distribution of the input process {4,} is known a priori a natural candi-
date is the maximum likelihood method; however this condition contradicts the
general formulation (2.1) where 4,~1ID. In this section we adopt and extend
the least-squares approach followed by Subba-Rao and Gabr (1984) for bilinear
models.

In order to s1mp11fy the treatment, we rewrite model (2.2) in regressmn form
and assume a szmplgfzed structure for its monom1als such as

MARMA =Py + Zﬁiyif'l- 4, (ﬁzt—; H“t- ) | (3:1)

i=1 i=1 =1

with the general constraint @®; +4) SO+ qp) for i < k. Resorting to nonlinear
least squares (NLS) mathod ie. letting P’ = [/30, Bi, ..., B,] and defining

pN = arg min|:]([!) = 2 af(B):I , g, ~ IID(0, o?)
=1 _
improves the situation with respect to the ML-approach. However, the analyti-
cal expression of the gradient of the Gauss-Newton algorithm still remains
complicate -

~1 N . o
NLS ﬂN(k +1)= BN(k) + [Z it(/e)ét } 2 f;,(k)a,(/e) (3.2a)
t=1 . t=1
&t(ﬂ) == - '"'"ﬁ" =¥y _gl, l: aat—’ :|§g-, ) h (3 2b)

where y,(B)’ =1, ¥4, ..., ¥,,] and g = max(g,) (see Grillenzoni, 1993 for the deri-
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vation). From (3.2b) we note that calculation of the gradient consists of a
filtering on the vector of the pseudo-regressors y,, but with a filter that depends
on random variables. This makes explicit' the dependence of the algorithm
(3.2a) on higher order moments of {z,}.

In the linear ARMA context we simply have §, = x,/6(B), ie & =x, - i 6,8,
j=1

By assuming x;=[z,_y, ..., 4,_,] stationary gaussian, we also have {§,} covariance

stationary and therefore {£E} is stationary in mean. Since ﬁN(k) is a mini-

mizer, its consistency can be proved by applying the ergodic theorem to

? o
£y E(7)a(7) - 0 where = (k=N). In (3.2b) {£,} is not a linear transforma-
=1
tion of {y,} and this in turn could not be stationary in covariance - for {z,}
should be 2p-th order stationary, with p = max(p,). The divergence of the esti-
mator (3.2a) may then follow simply because the process (3.2b) has not second
_order moments. For a multilinear model the problem of invertibility is even
more urgent than that of stationarity, since it enables the iterative estimates to
be computed. A general observation is that, unless the range of {z,} is restricted

within certain bounds, it is impossible to identify terms l1ke 3 Ha /.. using
=1
algorithms that involve the calculation of residuals. Also in this case, however,
we may resort to the stabilizing effect induced by time-varying coefficients,
and assume the existence of trajectories of {B,} which allow the stability of the

fllterlng a, t(zp Lp_13%p_ 2 )= 2= f;‘ xt)

Off-line Inference. Referring to time-varying parameter models, we now address
the 1m20rtant problem of finding a convergent off-line estimator for the mean
value B = E(B,). This is, indeed, the sole question that can be posed, in the off-
line inference, with evolving models. As we shall show, even restricting the
analysis to multilinear AR models, consistent estimators may only exist under
Assumptions (A)-(B) and other conditions concerning the behaviour of the

parameter function. The system of reference for the analysis is given below, in

o ) [0
which Xle,-,- < ékb,‘ for i<h and &,;20
i=1 ' ‘

MAR,  z=yB;+4,, (|3, )~1IDO, 6} 3.3)

. p.‘ . '
(Bin). e ienn

Since it i linear in the parameters, we may consider, as an estimator for B the
ordinary least squares method :

N -1 o | |
=(ﬁ Zy,yfj ( 2y,z,)=argminE(a,). | | (3.4)
t=1

=1
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Assumptions C. Inorder to derive this estimator and-to establish its consistency
with respect to the parameter ﬂ some form of orthogondtity between the param-
eter function {P,} and the variance function of {y,} is needed, namely -

ElE(yy)B) - B} BB I @
E@) <e, Ely,a)=0, Eyy)>0. | | (C2)

Indeed, multiplying model (3.3) by y, and taking expectation we get Elyz,) =
= Ely,y/)B, + E(y,4,), next applying the operator E['], under the above condi-
tions we may get

B=E(y,y) " Ely,z) - - 3.5)

Notice that, in general, given two deterministic bounded functions, the mean
value of their product does not coincide with the product of their means. An
immediate example is given by taking f(#) = sin(#), g(#) = - sin(#), in which f=g =0,
whereas b(®) = f(2) - g(¢) is negative nearly everywhere. Hence, assumption (C1)
may be very difficult to check and satisfy in practice; despite of this, its
admissibility stems from the fact that {§,} is deterministic and has a stabilizing
effect on {2} (therefore it tends to move rapidly). Otherwise, (C1) always holds
if {B,} is constant, periodic or monotonic.

On the basis of assumptions stated so far we have the following formal
result:

Proposition 1. Consider the time-varying multilinear AR model (3.3) in which:
1) assumptions (A1), (A2) are satisfied, in particular:

(A1) with ¢(m) = O(1/mb), b>#Q2r-1), r21 and

i
(A2) ‘with K=Q2x)(r+9), k= maxi[i k,-.), 0,d<n
' i=t
1) assumptions (B1), (B2) hold for every order 4 <K
1) cond1t1ons (Cl) (C2) are sat1sf1ed

1v) the sequence EN(Y:Y;) = {N—IZ E(y;9; } is uniformly positive definite.
t=1

Then for N sufficiently large the OLS estimator (3.4) exists with probabihty
one and is consistent for the average trajectory B= E(Bt)

Proof. The proof is not short and requires some auxiliary results concerning the
law of large number and the transformations of mixing sequences; it is given in
Grillenzoni (1993). In simulation experiments we have checked that OLS is an
accurate estimator for B if the sequence {B,} is not near the border of the
(extended) stability region. Anyway, in the case of time-varying parameters off-
line estimators are not the proper ones.

On-line Inference. Returning to the system (3.1), we note that its regression
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structure also enables the application of pseudo-linear regression (PLR) methods
in the estimation. These methods simply come from approximating the gradient
(3.2b) as &,(B) = yP) and inserting the corresponding iterative expression §(k),
together with 2,(k) =z, - y,(/e)'ﬁ(/e) in (3.2a); the final algorithm has the same
structure as the OLS (3.4), but is iterative. In the context of nonlinear models,
this approach significatively reduces the order of the moments that need to
exist; on the other hand it does not provide a minimization method. In prac-
tice, as shown in the case of linear models (see Hannan and McDougall, 1988
and Grillenzoni, 1990), the approximation of the gradient makes the resulting
estimators not always consistent and generally inefficient. Utilization of the
PLR approach should then be limited to recursive (on-line) methods, applied
for tracking the sequence of parameters {B,} in time-varying models. In this
context, questions of stationarity and convergence do not matter (by definition)
and the adaptive properties of PLR, allowed by the greater computational
speed, are preferable to those of accuracy of NLS.

Proceeding as in Solo (1978) or Grillenzoni (1990), by equating (k= N) =¢in
(3.2a) and with &,(le) replaced by §,(k), the Recursive PLR estimator of (3.1)

becomes

a0 =z, - Ble- 150 (3.6a)
R()=A- R(t - 1) + 5 | © (3.6b)
R-PLR B = ) + RO™$(D3(») (3.60)
at)=z,- B(t) §(2) (3.6d)
JO=A-J(t-1) +a(2)? (3.6¢)

P; q;
§e+1) = {]“f[z,ﬂ_,. TLat+1- j)}. (3.6)

=1 =1

The terms 4,, 4, are respectively the prediction error and the recursive residual;
the factor 0 < A < 1 by preventing R(#) from vanishing, enables parameter changes
(B, - B,_ 1) to be tracked. Since R(#} is an approximation of the Hessian matrix,
A should be designed to provide a suitable compromise between umbiasedness
(fast tracking) and est1mat1on accuracy. Finally, 6(#%=(1 - A)J(¥) provides an
on-line estimator for 62

Returning to the efficent NLS estimation, the exact recursive expression of
(3.2) can be obtained from (3.6) by replacing $(2) with &(¥) in the equations of
R(®), ﬁ(t) and inserting the filter

£(6)=3(5) - i [ﬁ(t)’ a""’)}t;u i, | (3.68)

Under the assumption of constant parameters the resulting algorithm tends to

t
minimize the weighted functional ], = 2 A*~"a2(B); however, in the context of
T=1
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evolving systems, it is not clear what may be the improvement in terms of the
MSE Ellf®» B,”z Given the complexity and multilinearity of the filtering
(3.6g), a worsening of the tracking capability with respect to (3.6¢) cannot be
ruled out.

The parameters of (3.1) may vary with time dependlng on the goodness with
which the multilinear model (2,2) approximates the “true” nonlinear function
(2.1). This situation can be illustrated with a simple example.

Example 5. Consider the bilinear system z,= Bz, 14, _, +2,_14,_1 +4,; this can
easily be decomposed into a time-varying AR(1) model z,=¢,_2,_, + 4, whose
parameter behaves like an MA(1) process ¢,= fa,_; + 4, with the same input.
Hence, whenever a nonlinear model is treated as linear, stochastic variability of
parameters occuts.

In certain circumstances the lack of nonlinear representatlon may then be
rectified by admitting that the model is time-varying and by estimating its
coefficients on-line. With respect to the Kalman Filter approach, algorithm
(3.6) is much more easy to implement since it only requires as priors 0 < A< 1,
R(0)=p- I, (and usually .95 <A <.99, p = 1); moreover, it only assumes that
parameters do not change suddenly as jump functions. To be more specific,
while Kalman Filter implementation requires that parameters follow a linear (or
a linearizable) process, recursive algorithms, by making estimates smooth func-
tions of past observations, implicitly assume B,=7(J,_;). The weighting se-
quence {M¢, 7)} should then be designed according to the path of conditional
probabilities P/(B,lz,_,) or to that of cross correlations Cor(B, z,_,). These
informations, however, are not available 4 priori and other, more pragmatic,
criteria must be used.

A way of avoiding altogether the problem of priors in the recursive estima-
tion, consists of reducing algorithm (3.6) to a stochastic approxirilation scheme.
This may be approached by setting A =1 and replacing R(# by R(#) = R(3/¢, so
as to retain the tracking capability. In this case the updating rule equlvalent to
(3.6b) becomes

R()=R(E-1)+~ [R(t 1) y(@)y(e)]

and &- -iterating the recursions one may initialize Ry, ;(0) = R4(N). A stochastic
approximation type solution is achieved if R(#) converges to a matrix 0 < R <o
as ¢t — oo; however, for problems explained above this may be guaranted only
for MAR models (3.3).

4. IDENTIFICATION
Once the dynamic representation and the estimation methods have been

defined, a crucial phase in the modeling is given by the identification of the
orders. With respect to the class (2.2), the task is difficult since requires the
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definition of the structure of monomials {yit = ﬁ k_’_’ flabii } i=1...,n ie.
=1 i=1
of the powers £, b;. For the sub-class (2.3), which is more regular two
techniques developed for linear and bilinear models may be used.
1) Parametric. By assuming a,~ IN(0, o?), independent normal, the orders
are selected by minimizing some information criterion IC = - 2 log(likelihood) + AN)
dim(model):

n= argmin[log(&z)+n-%], n=(p+q+r-s+P-Q+R-S) (4.1)
where (N-d), d = max(p, r, P, R) is the effectlve number of observations used
for calculating the maximum of the log-likelihood - (N - d) log 6%/2, and nor-
malizing the IC. The function f(N - d) is what characterizes the kind of IC used
in practice; Akaike, Schwarz, Hannan and Quinn have suggested, rispectively,
f(N) = 2, log(N), log(log(N)).

2) Nonparametric. This approach simply assumes 4, ~ [ID(0, 62), and it se-
lects models by comparing the sample behaviour of some higher order moments
with those theoretically generated by a class of low order models.

Example 6. Let z,=0a,_,a,_, +a,, b<k; simple calculation shows that {z,} is
white noise. However, third order moments y; = (7, /) = Elz2,, 2, ;] have six
nonzero values, namely (b, B} = ts(- b, - &) = pi3(k - b, - b) = d0* plus their
permutation symmetries.

Both these approaches are of limited practical ut1llty since they rely heavily
on the assumption that a true (regular) multilinear system exists. By contrast,
data are often generated by irregular (subset) models, having sparse coefficients
at strange lags. The main consequences are that the estimation of information
criteria may fail owing to the presence of many insignificant and collinear
terms, which make the Hessian matrix associated with the nonlinear estimator,
ill-conditioned. Secondly, analysis of the theoretical multicovariance functions,
related to all the subset alternatives of (2.2), is practically impossible and some
patterns are shared by different model structures.

The identification procedure that we now propose stems from viewing the
multilinear system as an ARMAX model whose inputs are glven by the monomials

Hz,_, [14._;, namely ¢(B)z, =B, + Z B;y;: + 6(B)a,. Assummg that with
i m

multlple products the series {y;,}}, aquire ;n autonomous nature with respect to
the output {z,}, the selection of 31gn1f1cant regressors may be developed on the
inspection of the “cross covariances” Elzy,, ;)= 7z,(k), as discussed in Grillenzoni
(1991). The strategy of putting coefficients B, in correspondence of every
significant multicovariance 7,,(k) yields exact identification only in the case of
multinear MA models (see Example 7 below). In the other cases, it is approxi-
mate and leads to overparametrization; however, it drastically reduces the
number of terms to be considered in the estimation of information criteria.

thl
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Example 7. Consider the model of Hinich-Patterson: z, = ¥, D050, 10, ;i + 4

i=1 =1
with a, ~ IID; by defining y, _, 4 =4,_4,_; we clearly have Elzy,_, ;1= 8,,0*.

7
Similarly, for a general MA system we have that 'E[z,[y,-, =ﬂa,_,-” #0
implies B;#0 for all 5. =

If {4} were be an observable input, there would be no problems to implement
the above identification strategy by estimating the cross multicorrelations
Pk} = 1,(k)/0,0; (see Priestley, 1988, p. 38). In our (univariate) context, how-
ever, a procedure must be sought to generate {4,} before the identification
process. A natural solution, exploited in 'many tests for nonlinearity (see Keenan,
1985), is provided by the innovations 2, = 8(B) ' ¢(B)z, of the linear part of the
model. The degree of approximation depends on how much {} is an independ-
ent sequence; here, it should be recalled that innovations processes are also
asymptotically independent (see Spanos, 1986, p. 148).

Substantial problems arise in extending the previous strategy to models of
type (2.2). The requirement ¥,,(0) #0 would be, in fact, only a necessary con-
dition for the existence of B;#0 since this implies. Y,i{#) #0 for some k#0.
There is, however, the possibiiity of identifying “spurious regressors” by noting
that, under stability conditions, 7,40) usually provides the greatest value; that
is | E(z, y,-,)l 2|E(z, Vie- o)l for £> 0. Moreover, the relationship covariance-coef-
ficient may be strengthened by referring to partial multicovariances. In system
(2.3), for example, the selection of a; # 0, should refer to the partial bicovariances
El%,9, ;19500 k> 01 Where y,_; ;4 =2,_;,42_;, 4 Explanation of these
remarks are given by the following example.

Example 8. Consider the model (1 - ¢B)z, = o4z, _ 2 _ i+ 4, With |¢l < 1 and sta-
tionary up to moments of 4-th order. Now expanding z, = 3, VikZ—ickZt—jt T %5

k=0
with v = 05,-,-(1)'(E and #,=a,/¢(B), it is clear that the diagonal cumulant function
Yoy(R) = Us(i + k, j + k), where y,=2,_gz,_;, is decreasing and has a maximum at
An efficient identification method is that of stepwise regression in which the
intermediate information provided by partial multicor relations p;\; ;i ;e
o E(z,yi,|y1,, v ¥j_ 1) 18 used to select the most. :fppropriate regressors to be
included in the model. If a coefficient that was significant at an earlier stage, later
becomes insignificant (after some other inclusions) then the corresponding pseudolinear
regressor is deleted. In the context of nonlinear ARMA systems calculation of

-1
Pyl ... i-1 requires the estimation of the model z, = §; + t By +a;, at each step

i=2,3,...,n both in order to check the signifi_cancegcl'f the included coeffi-

. g
cients as well as to generate the next candidate “regressors” i = (ri 2, l-i 8;y_; ]
=1 =
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A reasonable approach is thus to estimate p,;|;  ; ; as simple correlations
between 2;, and §,,. In summary, the two indicators for the selection of the
regressors y;, are given by p,;=Cor(z,9,) and p,y . ;. ;=Cor(a;9;) for
i=2,3, ..., n; by adding and deleting appropriate terms the best model should
be determined. =

To simplify the method, in particular to reduce the number of intermediate
estimations, we suggest a procedure for the system (2.3) which refers to the bi-
correlations functions Py, ) =< E(z,9,_; ;) where y,_; = (z,_;2,_ P @i, ),
(@, ;4,_;). First of all it 1s necessary to derive the sampfing distribution of their
estimators.

Proposition 2. Let {z,} be a non-gaussian process, asymptotically independent,
stationary up to moment of order 6, and {y,} defined as above. Then, under the
null hypothesis H, : z,= 4, ~ IID(0, 62 and for N sufficiently large, we have

N
Y (z —Z2) (3 ;) L .
.y _ t=max(i,f)+1 — ‘
o) = S N maG ] N0 ) “.2

~ Proof. A similar result is stated in Hinich and Patterson (1985) and its heuristic
demonstration is given in Grillenzoni (1993). We now present the various steps
of the identification algorithm of the quadratic model (2.3).
Step 1. Identify (p, 4) (the linear part of the model) with standard methods
such as analysis of sample autocorrelations (k) and partial autocorrelations.
Step 2. Identify (P, Q) by setting coefficients a;; in the same position (4, /) as

every significant correlation (3.2), i.e. |rzy(z’, i)l > 2/A/N —max(,j), in which
Veoii=Qe_ 1% '

‘ . p
Step 3. Fit the partial model z, = ﬁ O+t § 02 % + @, and gen-

: i i g
erate the corresponding residuals {2,}; then identify (, 5) (i.e. the significant B;i
coefficients) as in Step 2 by setting 5,_; ;= (z,_,3,_)). ~

‘ : r s )
Step 4. Fit the partial model z, =iep,.zt_,-+...+22/3,,-z,_,~&t_,- +4d, and

c . A Lo .
generate the residuals {2,}; then identify (R, S) as in Steps 2, 3 by setting
ﬁt—i,,‘:(at-iat—i)' .

Step 5. Fit the global model using as initial values the estimates of Step 3 and
for 6,7 the correlations rzy(z', j) of Step 4. Then drop all the insignificant coeffi-
cients.

Step 6. Estimate the final model and check its adequacy with residual corre-
lations r,,(k), 7,,2(k), r,2,2(k). The corresponding portmanteas test is given by

. K ‘ L ‘
Q(3K) = Z(n—k)[rm(k)+raaz(k)+razaz(/e)] =~ X*(3K - n). (4.3)
k=1 Hy
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As we have stated previously, the rationale of the algorithm is based on the
heuristics that the variables {9, tend to have an autonomous statistical behav-
iour with respect to {z,}, and that a necessary condition for (e, B;, &) #£0 is
given by Elz,y,_; 1#0. These features may be realistic, in particular for mod-
els which have an irregular (subset) structure. Under these assumptions, Steps
1-4 probably lead to a moderate overparameterization; however, in Step 5 all
the unnecessary coefficients are identified and deleted. Since the role of monomials

!

i i
6, implicitly accords priority to the autoregressive terms (z,_;z,_;). The iden-
tification algorithm then leads to a saving of nonlinear terms (4,_;4,_;) which
complicate the estimation problem and have a limited forccasting‘fmrizon.
Finally, the rationale of the residual test at Step 6 is similar to that of the test
for nonlinear ARMA models discussed by McLeod and Li (1983). While the
reason for considering only diagonal coefficients r(i = j) is merely practical, the
utilization of composite statistic (4.3) is relatively new. Its approximate distri-
bution is a direct consequence of Proposition 2.

(IEI zt_l-], [fl a,_-) may be competitive, the selection of coefficients a; before

5. APPLICATION

We now conclude the paper with a numerical application that deals with a
real data-set. Principal goal is to check the model building strategy discussed in
sections 3 and 4, but also to compare the statistical performance of various
nonlinear models.

The application concerns the ISTAT index of wholesale prices of industrial goods
in the period Jan. 1973-Dec. 1985 (N = 156), which was crucial for price inflation
in Italy. The original series {Z,} is not very interesting since it exhibits a marked
linear trend representable by a random walk plus drift: Z,=p+Z,_; +2, The
transformed series {z,} (reported in figure 1a), has been already modelled by
Grillenzoni (1990) in terms of linear models with time-varying parameters, and
by Grillenzoni (1991) in the context of multivariable transfer functions. In this
section we refer to {z,} for detecting and modeling non-linearity in the vari-
ables. The first diagnostic step is taken by the non-parametric estimation of the
density f(z), - o <z < + o and of the regression function E[z,'z,_ 1J. These are

R N
obtained from smoothers of the type f(z)=(NA)"Y Kl(z —z,)/b], choosing the

: t=1
window width 5 =.2 and the kernel K = N(0, 1) (see figures 2a and 2b).

Detailed evidence of non-gaussianity and non-linearity follows from the “bursts”
of variabiliy of the series {z,} (which are typical of bilinear time-series), the
bimodality and asymmetry of (z) (which are typical of threshold AR processes,
see Tong, 1990, p. 157) and the fluctuation of :'.“".[z,flz,,w 1J in correspondence of
large values of the series. In order to refine these gusses we now apply the
model building strategy discussed in the previous section.
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Figure 1(a,b) - Plot of original series 2,=(Z,- Z,_,) - 7 (a), and artificial series y,_; 3=2,_;2,_; (b).

Step 1. The first step is taken by the identification of the linear ARMA part
of model (2.3); from the inspection of the sample autocorrelation functions, we
got

.01+.62z, ,+a,, o©2=.93, R*=.38
2 = (10) (9.8) -1 L a ’
where the constant was included for subsequent work and t-statistics are in
parentheses.

Step 2. In order to identify the significant quadratic components y,_ i

=(2,_;2,_;) bi-auto correlations r,,(i, j} of table 1 were considered. Settmg
coefficients @; in the same pos1t10n (4, 7) as every significant correlation, we
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Figure 2(a,b) - Graphs of ‘non-perametric estimates of the denslty f(z) (a), and of the regression
function E[z,lz, 1] (b).

obtained the intermediate model (2.3) with (By, ¢q, 03, O3, Oy, Qyn Oyg)s
However, in the subsequent OLS estimation many parameters turned out insig-
nificant so that the resulting pa_rtial model was

=.14+ .62z,
e (10)’1 (<3

Notice that the above 1nc1udes the transfer function z,= [‘0‘13/ 1- rplB)]z, 23
which covers. the - sequence of coxrelatmns rzj,(l R, 3 +k), k=0,1,...,4 of
table 1. o »

21 z,_,lz,3+a,, 5% =.87, R'=.43
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TABLE. 1:
Sample bi-autocorrelations v [z, (z,. ;2,_;)]

id, io 1 2 3 4 5 6 7 8 9 10 11 12
1 13
2 -.04 .00
3 -22 -.21 -.08
4 16 -24 -16 -.12
5 -13 -7 =22 =20 -.12
6 -15 -.10 -.14 -19 -.13 -.11
7 -18 -.14 .08 -.10 -.11 -.07 -.11
8 -23 -17 -01 .01 .02 .02 -10 -.09
9 -10 -12 -04 .00 -0t -.05 -.01 -10 .11
10 _-.07 -.03 -05 -3 .03 -10 .00 -.02 -07 -.01 ‘
11 -04 .00 .05 -.04 .00 -.03 -01 .11 05 .01 -.05
12

-.06 .02 .15 .13 06 =06 -.04 - 12 .16 .18 .03 .03

Step 3. Identification of bilinear terms (zt j 8;_;) requires the inspection of
partial bi-correlations (4, /), with 5, ; ;=(z,_,;3, ;). Since the significant
coefficients were in correspondence of the lags (i, ;) (1, 1), (4, 11), (10, 5),
following the procedure of Step 2 we selected the parameters ﬂ1,1’ Bi11> Bros)-
The intérmediate estimation gave

B 02— 22 1228y~ M 2Bt

(3 7)) {10.7) (47 (-2.5) (-2.0)
+.10z, 08, s +a
(19 —=10"%¢-5 it

6°=.82, R®’=.47.

Steps 4, 5. For the identification of the quadratic terms (4,_;4,_) the partial
bicorrelations r,(i, /), with 9,_; ;= (@,_;4,_)), were considered. The sole sig-
nificant coefficients were in correspondence of (i,/)=(1,1), (2,2) and this
leads to the selection of (8;;, 6,,). However, the term &4, 4,_, is competi-
tive with B,12,_14,_1, included at Step 3, and 8,,4%_, is implied by the trans-
fer function z,=[8,,/(1 - ¢,B)la?_,. Estimation of the global model with
(Bo> 91> @135 Buys Bu1ss Bioss 011, 8yy) confirmed the insignificance of (By;, 6,,).

Step 6. The nonlinear estimation of the final multilinear model proyided

30+ .67z 24z_z_ A6 7, 0,y + 122, 05— 15 @by as,
(37) (1}4)t1 (5.4 =17 ¢ (_24)t4 11 (22)t10t_5 (_Zé)tlf

=.80, R?*=.49

with a value of the portmanteau statistic (4.3) Q(3 - 12) = 25.3 < 43.8 = y 45(30).

Evaluation based on the statistics (6%, R?) and the significance of the coef-
ficients, may not be sufficient to check the robustness of the modeling proce-
dure. It is necessary, in fact, to use indicators which take into account the
tradeoff between statistical fitting and parametric efficiency. Table 2 reports
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the values of three information criteria calculated at previous steps; in two
cases the model that is indicated as the best is the final one.

TABLE 2
Information Criteria evaluated at Steps 1-6

Step, (N-d) 1, (154) 2, (152) 3, (145) 6, (145)
AIC: fiN) =2 -.047 -.100 -.116 -.140
BIC : AN) = log(N) ' -.007 -.040 +.007 -.017
HIC : AN) = log(log(N)) -.031 -.076 -.066 -.091

The parameters of the model identified at Step 6 were successively estimated
with the recursive algorithm (3.6) in order to-check their stability over time.
The algorithm was initialized with ﬁ(O)=BN, R(0) = Ry obtained from the
iterative estimation. The optimal forgetting factor Ay=.974 was obtained
with a search procedure by minimizing the global objective function

Sy(A)= 2 [a(s)? +||p(t

and accuracy Trajectories of estimates B(#), i=1, ..., 6 are shown in figure 3.

Notice that despite the mild value taken by l a 51gn1f1cant variability of
parameters occurs. This is a clear indication that the process {z,} is nonstationarity
in higher order moments. Other important features regard the fact the on-line
estimates move around their off-line value B and their fluctuations are asym-
metric, i.e. compensate each other. This confirms, in a certain sense, the role
played by the variability of the parameters to stabilize the behaviour of the
output. Finally, the gain in statistical fitting allowed by recursive estimation is

: . N
summarised by the residual variance: (N-d)™ Y 4(¢)* =.63."

To complete the exercise we now evaluate th:: ;erformance of neural network
(NN) and exponential autoregressive (EAR) models on the same data-set. The
framework of neural networks (see White, 1989) is based on a sequence of
hidden units having common input variables {x,} and the same structure y(-).
The responses of the units interact at an intermediate laycr before reaching the

output y, = ¥ i Bv(xia, )}"‘4: Accordmgly, the shape of y() is represented

by a threshold rule or a sigmoid function (e.g. a probability d1str1but10n) This
framework has important connections with the projection pursuit regression de-
signed for non-parametric curve fittings (see Friedman and Stuetzle , 1981), in
which l[!() are smooth functions with different structure and (¥= [3, )=1.
Slmllarltles with exponential time series models of Ozaki (1985) can be estab-
lished by taking w(-) as the logistic function [1 + exp(-)"!]"}, ¥=1 and letting

Ye=2p X% =2;_ 1t
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Figure 3(a,b,c) - Recursive estimates of the parameters of the model at Step 6.
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N-N: 2, =P, + i B[l +exp(~az, N +a, ~ (5.1a)
j=1 | |

EAR: 2, =Py + i[cp,. +B; exp(~oz} )z, + ;. (5.1b)
=

Network (5.1a) was applied by White (1989) to fit the Hénon map y,=1- 1.4
92_,+.39,_, with x;=[1,52_,,9,_,] and g=5. The number of parameters
involved (21) was excessive in view of the fact a better approximation is given
by a quadratic AR(2) model.

The application of (5.1a) to data of figure 1a provided d1sappomt1ng results.
Given the sensitivity of the model to initial values, the identification of the
order g was developed stepwise. For ¢ > 2 no significant 1mprovement of 8}
was achieved

. —1 -1
=.27-21 [l—l-exp( 41419z, I)J +.87[1+exp(—43 6—-291z. 1)] ,
(L3) 3.2y 11 @n (1.7) -3.4) (-28) -

0?=.88, R’=.44

The statistical performance is equivalent to that of the intermediate nonlinear
model at Step 2, but with a greater number of parameters. The reasons for this
disappointing result lie in the fact that neural networks, such as projection
pursuit regression, have been designed for the approximation of complex deter-
ministic functions and for nonparametric curve fitting. They are effective, in
general, for approx1mat1ng the chaotic solutions of difference - differential
equations, but not for representing data generated by stochastic processes. This
is particularly true for time series that exhibit nonlinear and nonstationary
behaviour. There are also practical problems which make the utilization of
these models unsuitable : 1) there are no general rules for chosing the shape of
¥(.), w(-) and representations are not parsimonious; 1) the estimation process
requires many iterations and accurate initial vales; 111) optimal forecasting algo-
rithms are very complicate.

Data of figure la were also fitted with the exponential model (5.1b), with
g =2, providing a residual variance equal to that of the AR(1) model at Step 1.
The reasons for this disappointing behaviour are similar to those of neural
networks since this class of models has been designed for particular physical
systems (see Ozaki, 1985).

Istituto Universitario di Architettura CARLO GRILLENZONI
Venezia
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