Modeling Time-Varying Dynamical Systems

CARLO GRILLENZONI*

A global methodology of identification, estimation and forecasting of transfer function (Box-Jenkins) models with determin-
istically varying parameters is provided. First, properties of stability and forecasting algorithms are investigated by means of
Markovian representations and methods of solution of nonstationary difference equations. Next, the degree of the polynomials
of the system is specified with typical off-line methods, and the shape of the coefficients (parameter functions) is identified by
means of recursive (on-line) algorithms. Finally, the identified parameter functions are inserted in the model and their coefficients
are estimated (off-line) on the original data by means of pseudolinear regression techniques,
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1. INTRODUCTION

Nonstationary time series models with deterministically
varying paremeters were discussed by Farley, Hinich, and
McGuire (1975), Melard and Kihem (1981), Bittanti
(1986), and others. With respect to the random-coefficient
approach, the advantage of the deterministic one is that
the resulting schemes use the same inferential framework
as the stationary models; moreover, their building pro-
cedures can avoid the need for a priori specifications. On
the other hand, the idea of “nonstochastic evolution” is
synonymous with slow and systematic change, so the fields
of major application are social-economic data and quasi-
deterministic processes [typical examples are communi-
cation systems with periodic parameters; see Bittanti
(1986)]. :

Consistent with the data-based philosophy of Box-Jen-
kins models, this article attempts to provide a complete
procedure of identification, estimation, and forecasting of

- transfer-function models with deterministically varying pa-
rameters (VTF). Given the complexity of the task and the
kind of applications to which the method is addressed,
some structural restrictions are needed, such as fixed or-
ders for the model and continuous functions for the pa-
rameters. This article is particularly concerned with cubic
polynomials of time. The global model-building strategy
is summarized by Figure 1.

I now describe the crucial phases of the strategy. Step
1 identifies the orders of the system with typical off-line
methods (Box and Jenkins 1970; Poskitt 1989), which mea-
sure average tendencies on the sample. Step 2 identifies
the shape of the parameters in two stages: In step 2A the
raw-time path is observed by estimating the model recur-
sively (Ljung and Soderstrom 1983), and in step 2B the
functional form is recqvered by interpolating the recursive
estimates with time furictions. Finally, in step 3 the iden-
tified parameter functions are included in the model, and
their coefficients are reestimated (off-line) on original
data. Notice that at every step the choice between alter-
native techniques (in italics) is possible; this makes the
procedure open. In particular, it includes the stochastic-
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coefficient (Bayesian forecasting) approach, which simply
results from stopping the model building at step 2A.

The need to proceed beyond step 2A arises because
optimal design and statistical analysis of recursive esti-
mators are not possible without precise a priori informa-
tion on the evolution of the system (see Benveniste 1987).
Instead, as we see, step 3 can actually free the modeling
from dependence on the particular on-line algorithm used
and the arbitrary priors it needs. Moreover, forecasting
with step 5 has the advantage of making predictions on
the parameters as well, but without changing the infer-
ential framework of the stationary models. Step 4 closes
the entire scheme, allowing for revisions to previous errors
and nonoptimal specifications.

Methodologically, the outlined strategy requires the ex-
amination of the following issues: (a) solution and analysis
of the stability of stochastic difference equations with ra-
tional polynomials and time-varying coefficients; (b) anal-
ysis of the tracking ability (in. a statistical sense) of
recursive estimators under the assumption of deterministic
evolution; and (c) derivation of algorithms able to solve
highly nonlinear estimation problems. These points are
developed analytically in Sections 2, 3, and 4; throughout,
an example based on real economic data is developed to
illustrate the procedure. )

2. REPRESENTATION

In this section I investigate the structure of the transfer-
function model with deterministically varying parameters
(VTF), its solution, the related properties of stability, and
the forecasting algorithms. The dynamical system consid-
ered is the following:

wy, + 0B + - + w, B

th\= 1 - 51,3 . ar'Br Xl-—b
vl g LT OBt -+ + 0, B INGO. o2
¢ - 6B = — §, B " ©. 3,

2.1)

where {Y;} is the system output, {X} is the exogenous
input, and {a,} is the casual disturbance. With (B, b, d)
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Figure 1. Summary of the Global Model-Building Strategy.

we denote the back-shift operator, the delay and the de-
gree of nonstationarity in mean of input and output [for
details, see Box and Jenkins (1970, part III)]. Nonsta-
tionarity in covariance is induced by the time-dependent
coefficients. ,

The class of VIF models is very large and practically
intractable. I emphasize the features of the aforemen-
tioned representation, which enables the development of
a strategy of modeling. The orders (7, s, b), (p, d, q) are
fixed, and the number of parameters (r + s + 1 + p +
q) is minimum. The parameters are continuous polynomial
functions for ¢ real (this article is concerned with g, =
2,10 a;t), for all i). The process {a;} is white noise and
stationary. The first condition permits the identification
of the orders with off-line methods, the second involves
the consistent application of recursive algorithms in iden-
tifying the shape of the parameters, and the third means
that the resulting model must represent all of the possible
information. '

Stability. The definition of properties of stability is cru-
cial for estimation and forecasting purposes. It cannot be
developed inside the stationary framework, however. To
simplify the analysis, we substitute (1 — B)%Y, = y, and
(1 — B)?X, = x,in (2.1) and split the resulting model into
two subsystems y, = m, + n,, withm, = w,(B)x,-,/5(B)
and n, = 6,(B)a,/¢,(B). Now, using a vector notation, we
rewrite (2.1) in pseudolinear form:

m, = dm._; + oX._,,
n, = é/mn,_, + 0;a,_; + a;,
Y = B;’L(B) + a,

2.2)
(2.3)

and

B/ =[5/, w, &/, 0],
ztl(B) = [m;—la xr,,—b) n,'-;, at'—l]’

where 8, = (9, *** 4,), m;-, = (m,-, - m,_,),and so
forth; B, is the vector of time-varying parameters, and'z,(+)
is the vector of pseudolinear regressors (Solo 1978).

The stability of the VTF model then coincides with the
stability of the two subsystems m,(x,) and n,(a,). To sim-
plify the analysis further, we henceforth work with their
equivalent Markovian representations. For {m;} thi
means ' o

m_y S Xelp

m, 51' 5”' Wy, *** ,ws,l:_
me, | _ m,_, Xi-b-1
. - . + . . ’
lr-l . ‘Os
my_riy m_, Xt—b-s

thatis, m, = Am,_; + Qx,_,. Now, solving recursively
for m, (¢ > 0), with b = 0 and initial condition m, = 0,
we get :

m;, = Qx,,
m;, = A0 x, + Q.x,,
and
m; = AAQx, + A;Qx, + Qix;,

etc.; so the limiting expression depends on infinite prod-
ucts of lagged A, terms and one (},. Sufficient conditions
for the asymptotic stability of the solution m, = f(x,) are
then given by the following.
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Condition 1. {w,(z)} has bounded coefficients every-
where ¢t > 0.

Condition 2. {J,(z)} has roots outside the unit circle
nearly everywhere (i.e., with the possible exception of a
finite. number of £>0).

The statement holds, since the elgenvalues {4} of {A}
are the inversg of the roots of {d,(2)} (see Fuller 1976) )

i ¢ ¢ r
A =I1PAP =]]]14 —0.

=2 =2 t=2 i=1

Now, assuming bounded roots (i.¢e., nonzero eigenvalues),
the terms A, are nonsingular and the aforementioned is
true only if each elément of the matrix II; A, tends to 0.

With reference to the second subsystem {n,} [equivalent
to an autoregressive moving average (ARMA) process],
the associated Markovian representation coincides with a
vector ARMA (1, 1) model .

-
n, o, o o, || 71
ne-y | 2 ni—2
. lp—l .
Ny pi1 dLBe-p
0y, -+ 0, || a1 a;
~ a,_ 1 a,-
+ =2 + t. 1 ;
"lq-l .
| at-q at—q+1
that is, m, = ®&n,_; + Oa,_; + a,. Again, solving recur-

sively for n,, a, (¢ > 0) with initial conditions n, = a, =
0, we have

n, = a,,

n, = (@ + 03, + ay,
and ' ‘

2, = —0,0, + ®)n, — (8; + D), + n,.

Reiterating the previous reasoning, we may conclude that

the sufficient conditions for the global stability of the sys-

tem are completed by the following requirerhent

Condition 3. {¢,(z)} and {6, (z)} have roots outside the
unit circle nearly everywhere. It is easy to show that in
the case of nonpenodlc parameter functions these are nec-
essary.

Under the aforementioned conditions (1-3), the asymp-
totic Markovian solutions of the subsystems are bounded
and independent of any initiation my,, my < o:

= ZO ViXip-is E Va,; + a,
1= ]:s

where Vo, = g}, Vl,' = ALy, VY, = AA, V; =
A,A,_lA,_zn,_g; q’ol = l, ‘I’l, = (q)‘ + @,), ‘I’zl = t(q’t—l
+ 0,.),and ¥; = ®P,_(P,_, + O,_,). For every time
instant there are different sequences of matrix weights,
and thus a saving of calculations is in order when ¢ change;
here, simple one-step-ahead updating formulas are V; _,

2.4)
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AV, and ¥, = ®,;1W¥,.q. Notice that when the
orders of the system are different, r # s + 1 and p # g,
the products A,{); and the sums ®, + ©,can still be carried
out by adjusting the dimension of the matrices with rows
and columns of zeros on the bottom and the right.

As a result of the analysis conducted so far, we finally
recover from (2.4) the scalar solution.for the model (2 1),
namely .

2 Vl,xl b-i + 2 W],al—j + a,

(2:5)
i=0 j=1
and
vl': = tr[vir]’.‘ Wh = tr["l’“jl]’ jZ 1 ve (26)

The relationship (2:6) follows by induction as in the sta-
tionary case (Fuller, 1976), and it actually proves the sta-
bility of (2.5) under Conditions 1-3. Its: computational and
analytical importance for the evolving models is funda-
mental. Indeed, the sequences {v,,, ,} cannot be obtained,
as in stationarity, by expanding in Taylor series the rational
polynomials w,(B)/6,(B) and 6(B)/¢.(B) for each t.
These calculations serve at most as abproxnmanons in the
case of smooth evolution and roots of 6,(B) and ¢ (B)
well outside the unit circle.

Foretasting. Previous results have'a direct utilization
in terms of forecasting algorithms. The methods proposed
by Box and Jenkins, (1970), based on the ARMAX form
0(B)p(B)y, = w,(B)d),(B)x, » + 0,(B)6,(B)a, or the
infinite lineai form (2:5), present, in the nonstationary
context, several problems of calculation. In fact, at every
step it would be necessary to execute three products of
polynomials or compute two sequences of matrix weights.

To avoid these complications, we may refer to the de-
composition of the VTF into two independent subsystems.
In prediction this means J(I) = #,(I) + A(l), namely

)A'l(l) = E[YH-I | Xi-i al—j]

= E[yuil %] + Elyeil o], @27)

(D) = 8ty + WI'HE[X:H—L' | x-3i=0], (2.8)
and » ‘ k

(D) = drofyyy + 01+1E[at+l 1] az—pf 20 (2.9

(2.8) and (2.9) are derived from (2.2), and together pro-
vide a very practical algorithm in forecasting. Once the
VTF model has been estimated, the vector B,.; must be
replaced by its deterministic extrapolation ﬁ,+,, and i,
and #,,,;., become vectors of lagged forecasts. A com-
putational problem in (2.7)-(2. 9) is that the predictor re-
quires the series m,, n,, which are available only by filtering
the whole sample {y,, ¥ }{'; as we shall se¢, however, these
quantities are generated in the estimation phase.

What makes the Markovian calculations (2.4)—(2.6) fun-
damental is the expression of the variance of the'l:steps-
ahead prediction error é,(!) = y,.; — $,(I). This variance
is necessary for the confidence intervals of §,(!), and since
in (2.5) the sequences {v;, y;} are deterministic, it can be
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obtained as by Box and Jenkins (1970, p. 405):
6i(h) = E[3() — yi}

3 -1 -
-(Ea)a+(1+ 3w
2

i=0

where for example, v;, = tr[A,; Q.- ] and A}, = [6,,:
L_i], @/i1-1 = [0,4-1: O], and so forth. The advantage
of forecasting with VTF systems is then twofold: One can
predict the parameters 8,, but in a deteérministic fashion,
that is, leaving unchanged the inferential framework of
the stationary TF models. In particular, this means that
the predictor (2.7)—(2.9) is asymptotically normal distrib-
uted. A similar result could riot be established in adaptive
forecastmg, in which the last available recursive estimate
B(¢) is utilized from ¢ + 1 to ¢+ [, and whose statistical
properties are uncertain.

Example. The embpirical example that begins here in-
volves the relationship of causality between two economic
processes. We define X = exchange rate £/§, Y = index
of wholesale prices, and ¢t = January 1973-December 1985
(N = 156). Stationarity in the levels was reached with
difference of order one; the resulting series are displayed
in Figure 2, showing nonstationarity in covariance. Table
1 reports the sample correlation functions (CF’s); since x,
is practically a white noise, the implied TF model is

(1 = B)Y, = [(wo + w,B)/(1 =~ 6,B)]
(1 - B)X, + [1/(1 — ¢,B)]a..

Table 2 reports the parameter estimates obtained with
two related methods: nonlinear least squares (NLS) and
pseudolinear regression (PLR). Since the next sections are
based on these algorithms, it is worth noting here that
their performance on these data is identical. To make a
preliminary guess on the nonstationarity of the system,
Table 2 provides NLS estimates on three subsamples.

3. IDENTIFICATION

A natural way of identifying the functional form of the
parameters is by estimating their value for each instant
with sequential (on-line) estimators; the resulting series
are then fitted with functions of time. Recursive estimators
for TF models were provided by Solo (1978), Ljung and
Soderstrom (1983), Young (1984), and Sherif and Liu
(1987), using the PLR, NLS, refined instrumental variable
(RIV), and extended Kalman filter (EKF) approaches
respectively. Given its computational simplicity and its
adaptability (we see later what this means in practice), I
refer to the PLR approach.

Recursions. Heuristically, an iterative PLR (IPLR) al-
gorithm for the TF model may be obtained as by Spliid
(1983), by generating at each step the pseudolinear re-
gressors z,(+) and then applying the ordinary least squares
(OLS) method to the model (2.3):

Bk + 1) = [Z i;(k)i,’(k)]_ 2 u(k)y..

t=1 =1

(.1)
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The corresponding recursive PLR (RPLR) can’ easﬂy be
recovered by equating the number of iterations and the
number of processed data (k = N) = ¢ and proceeding
as in the derivation of the recursive least squares algorithm
(RLS; see Plackett 1950):

é =y — B(t - l)lﬁt(t - 1)
R®)=A-R@—-1)+20-D2¢-1)

B(») = B(t — 1) + RO)%(t - )¢, (3.2)
and
mt 2': (t))fl, i + 2 (b(t)xt b-j
i=1 i=0
A =y — m,
- éq&,(t)ﬁ,_, - jil 6,(0a,_;. (3.3)

(3.3) provides a proper dynamic adaptation of the three-
step filtering of Box-Jenkins, and the quanntles m,, A,,
and 4, are used for updating the vector of regressors 2.0).
By discounting old observations in R(D) = . l‘ 2.2, and
preventing R(r) ™! from vanishing, the parameter 0<i<
1 actually enables the tracking of parameter changes B, —
Bt

The properties of this algorithm have béen investigated
in depth only under the assumptions of stationarity, sta-
bility, and 4 = 1. Since the gradient of the (optimal) NLS
estimator of the TF model takes on the analytic expression

&(B) = ~*5 = GBmB)
[ 6B 1
G(B) = diag [0(3)6(3) B O

it has been established (Ljung and Séderstrom 1983; Solo
1978) that the approximation §, = z,, implicitly made by
(3.3), does not affect the properties of convergence in
probability only if G(B) behaves like a passive filter:
R[G(z)] > 0 |z| = 1. This feature, for second-order
polynomials, is satisfied on about 90% of the stability re-
gion.
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Table 1. Sample Correlation Functions

Lags
Funcon 0 1 2 3 4 5 6 7 8 9 10 11 12 Q@4
ACR(y) 1 62 41 28 23 20 14 11 09 .00 -.03 .00 .08 473
ACR(x) 1 24 07 05 08 .12 00 01 06 -.05 ~06 —-.13 -.068 214
CCR(y,x) 34 45 24 23 19 .10 .08 07 .14 .04 —07 —-.10 -.14 38.1
CCR(x,y) .34 .07 .08 .05 .06 .02 .01 .04 06 -.01 .04 .10 .14 175
NOTE: ACR denotes at \. CCR denotes cross

The nonoptimality of (3.2) is irrelevant at this stage,
however, because we are assuming nonstationary param-
eters, and we are only interested in the tracking capability
of the algorithm. In statistical terms, this problem has been
well investigated in regression models with nonstochastic
regressors and random-walk parameters. The conclusion
was that the Kalman filter provides the best mean squared
error (MSE) estimator if the probability distribution of
parameters is known a priori. The systematic analysis of
algorithms of type (3.2)—(3.3) has received attention from
Benveniste (1987) and Solo (in press); the general frame-
work developed by Benveniste seems particularly useful
for dealing with the VTF system. In the sequel, I assume
that the true parameter model B4(e, ) is a continuous and
bounded function of time, unknown in the coefficients «
and the structure.

First, we exclude that (3.2) may be a consistent esti-
mator. In fact, the estimator of Ay(t) = Bo(?) — Bo(t —
1) is R(¢)"'2,6, = A(r); hence unless A = 1 and R(z)~! —
0 a.s., the estimator will be constantly subject to the ran-
dom fluctuations of the prediction error ¢,. On the other
hand, for 2 = 1 we have A(f) — 0 a.s., but since Ay(f) #
0 the estimator will be uniformly biased. This conclusion
must not prevent us from analyzing other properties, such
as minimum MSE and unbiasedness, suitable for charac-
terizing the tracking capability of (3.2)-(3.3) in statistical
terms.

Since Bo(¢) is differentiable we must reduce B(¢) to the
same nature. To this end, we rewrite (3.2) in stochastic
approximation from (see Tsypkin 1971):

ﬁ(t) = é(t - 1) + yrH(B’ BO’ z, t)’ (3'5)

where y is the stepsize, I is a nondecreasing gain matrix,
and H(-) is the general search direction. (3.5) is fairly
general, because in PLR with A = 1 it means y = 1/t and

I' = R(#)7't, whereas in NLS we have H = §e, = Gze,
Table 2. Estimated Transfer Fun(;-tions
Parameter o
- Residual sum
Estimates wy Wy J, &, of squares  Q(24)
NLS 0104 0098 458 .552 114.3 16.7
(42) (32 .(32) (8.1)
PLR .0104 .0098 .465 .550 114.5 - 174
(42) (3.1) (34) (8.0
Subsamples
t = 1-50 025 017 .66 .61 16.6 8.5
t=51-100 .012 .001 81 .73 35.3 14.7
t =101-150 .007 .011 37 .29 45.3 17.2

NOTE: t-statistics are in parentheses.

and so on. Now, assuming y is fixed-and I’ is constant, we
may study the performance of (3.5) by means of its as-
sociated ordinary differential equation (ODE) (see Ljung
and Soderstrém 1983, p. 147):

aB(t)/at = rh(B: BO’ t)a ‘
h() = E[H(B, Bo» 2, )]

The meaning of this must be sought in the béhavior of its
solution B(#) with respect to the estimator f(r) : lim,.,
P(IB() — B(yt)l > &) = 0. The situation in the evolving
context is more complex, however, and requires that for
a Bo(t) fixed, B(r) = Bo(¢) be a locally stable equilibrium
of (3.6). This may be ensured by assuming that the al-
gorithm correctly matches the true system [i.e., h(B, By,

(3.6)

1) = 0 & B(t) = Bo(?)], and that the matrix T is asymp-
totically stable: :
Rfeig[Thg(Bo, ?) p-p,J}<0 V1, 3.7
ah(B> BO’ t)
ho(c) = ——=———.
o(). B0

The behavior of (3.6) can now be compared with its true
counterpart af(¢)/dt. Here, although B(¢) is smooth, its
associated ODE may not have a stable equilibrium [Ben-
veniste (1987) called this situation a nonzero drift param-
eter model], so a permanent effort is required for the
algorithm to keep the bias small enough. In other words,
the speed of adaptation (y) of (3.5) must be larger than
the speed of variation of B,(t), and (3.7) becomes nec-
essary. If these conditions. are met, then following Ben-
veniste (1987, p. 14) we get the

EIB() ~ B |
= e, o [ 2]

+ tr P (Bo, t),

where P(-) is the dispersion of the estimator that satis-
fies the Lyapunov equation (Thg)P + . P(T'hg) +
TE(HH;)I' = 0. Benveniste’s results aré more precise
and general; they regard both-deterministic and stochastic
parameter models, with zero or. nonzero drift. At this
point, however, I wish to comment on the implications of
the previously given results.

(3.8)

1. (3.8) provides the classical decomposition of the
MSE in terms of bias®> + variance; this:means that recur-
sive estimators like (3.5) are not only inconsistent for
Bo(?), but persistently biased as well.

2. The optimal design of the gain I requires the exact
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~ knowledge of the speed of variation of the true system; in
particular, the scaling factor |[F|:should be of order greater
than [|8Bo()/d¢||. This leads to a time-varying gain.

3. Without a priori information on the parameters, only
reasonable choices of I are possible; increasing gains (i.e.,
speed of adaptation) reduce the bias in (3.8), but also
inflate P in the Lyapunov equation. Therefore, the optimal
design of I should provide a compromise between fast
tracking and high accuracy.

To this unsatisfactory situation, we must add the diffi-
culty of finding the sampling distribution of recursive es-
timates. In the stationary linear model y, = B X, + a, with
independent regressors, we have ‘that $(z) — NIB,
c?E(xx;) (1 — A)/(1 + A)], but the same is hard to
prove for the system (2.1), even under stationarity.

When a priori information on the system is not available,

reasonable recursions can only provide a crude idea of the
underlying parameter models. This strengthens our pro-
posal of proceeding further in the model building.

Interpolations. ' The question of fitting recursive esti- -

mates with time functions largely coincides with a problem
of numerical analysis. Recall the Weierstrass theorem,
which states that any continuous function can be approx-
imated in a closed interval by a finite linear polynomial.
A better performance is clearly guaranteed by orthogonal
polynomials of Lagrange Chebyshev, and so forth (see
Farley et al. 1975).

Consistent with modern splme techmques that combine
kernels instead of polynomials, a general interpolation
strategy is represented by a linear combination 6f nonlin-
ear local functions #,(t) = 2, a;f;(¢). Here, local means
functions that outside certain fmxte intervals are practically
constant; typical examples are probablhty densities and
distributions, spectral windows and their integrals, and so
on. The parameters of location and slope of these functions
are identifiable on the plots of B £). In any case, before
the 1nterpolatxon a smoothing of B(s) with moving aver-
ages is necessary to show up the functional form of By(¢).

Example. Figure 3 displays RPLR estimates fitted with
polynomials of third order (ap + a;t + a2 + ast®); these

0,03 -0,01

' 80,00 ' 100, oo 120 00" 140,00 -
1973 01- 1985

a
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' itialized with B(0) =
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functions have been broadly used in traditional spline tech-
niques. The sequential algorithm (3.2)—-(3.3) has been in-
B8/2 of the off-line estimation (Table
1) and the coefficients A = .97 and R(0) = diag[1/.17],
which empirically have yielded uniform and mild varia-

bility of estimates. Table 3 resumes the corresponding re-

sults of regression.

4 ESTIMATION

In this phase the identified parameter functions are in-
serted in the TF model, as initial values, and their coef-
ficients are reestimated on the.original data by
optimization programs. The probléms to be tackled are
highly. nonlinear, however, such-that optimal: estimation
methods NLS: and maximum: likelihood—which .require
the analytical specification. of compléx-likelihood or-ob-
jective functions-and-the exact computation of their gra-
dient—have serious numerical problems; ofterythey do not
converge or yield inadmissible results. Suboptimal solu-
tions,.based on off-line PLR techniques; can provide prac-
ticable alternatives, In-fact, .they.avoid: any- analytical
specification and are -easily implementable -on standard
statistical software. Moreover, they treat the nonlinearity
of the TF system separately.from that of the parameter
functions. These features permit the monitoring of the
minimization process to enable the identification and con-
trol of the specific factors that cause numerical instability.
To simplify the derivation and the analysis: of these tech-
niques, we refer without loss of generality to: a simple
moving average model MA(1). .

Derivation. 1 begin with parameter functions given by
linear combinations of time functions, generally nonlinear
but observable from the identification phase: z, = 6,(B)a,

= (1 + 0,B)a,and §, = Z; 0,f,(¢) = (H(t) {in the previous
example we had fi(r) = ). Now, given the usual NLS
estimator '

ok + 1) = 6(k) + [Z &(k)&'(k)]i" ‘

x S &Mk @

0,60

TF-PARAMETERS
0.40

40,00 ' 60.00 _ 80.06 = 100,00 120,00 140,00
TINE: 1973,01-1985,12

b

0.00 | 20,00

Figure 3. Recursive PLR Estimates and Their Interpolations: (a) w, and w, (b) 6, and ¢,.
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Table 3. Identified-Parameter Functions

Parameter a ey a as R?
oft) 222E~-1 432E-3 -.936E-5  385E-7 .63
o (9.8) (3.4) (-5.0) (4.9)
y(t) 505E—-1 - .133E- 101E-4 -.201E-7 .78
192y - (-9 4.7 (-2.2)
~ (8 -.333E-0 -.150E-1 .164E-3 ~—.500E-6 .48
: -10.3) (-8.4) .(68.2) (—4.5)
L) ~155E-0 —-.197E—1' .207E—-3 —.529E-6
. ~6.6) (—158.3) (1 0 8) (—8.5)

NOTE: t-statistics _re in parentheses.

and

aa,

£0)= g =3 ( B)

a formal derivation of the PLR algorithm consists of ap-

proximating the gradient with the input—output quantities,

 that is, avoiding the filtering with 1/6(B). Indeed, setting

1(k) =~ f(a,-(k) = &(k) and a,(k) = z, - O(k) %,(k) and

substituting these in (4.1), we may obtain a compact al-
gorithm similar to (3.1):

f(l)a,-l,

-1 N

S &(k)z..

t

0k +1) = [}_j ﬁ,(k)ﬁ,’(k)] (4.2)
’ t
This estimator is an iterative weighted PLR (WPLR),
where weighted means that the evolution f(¢) is inserted
in the pseudoregressors a,_,, yielding a transformation of
stationarity. This feature is peculiar to the PLR method.
In the case of nonlinear parameter functions containing
unknown coefficients z, = [1 + f(8, £) B]a,, the derivation
of the WPLR algorithm is not easy, and compact expres-
sions like (4.2) cannot generally be derived. In heuristic
terms, however, the idea of PLR is still applicable in the
~ following way: generate d(k) = z, — f(k, t)a,_,(k) with
do(k) = 0, then NLS estimate z, = £(0, Hd,_ (k) + e.
This yields the doubly iterative estimator

A ! A N ‘1
bk + 1[ k) = O(k | &) + [g 340 | K)3:Ch | k)]

X Z ik | K)e(h | k) (4.3)

and

ae‘

§h k) = ——

sl = B,

0=0(h|k)
é(h| k) = [z, = f(h, )a,-(K)],

which disaggregates the nonlinearity of the parameters (k)

from that inherent to the model (k). Equating (k = h), -

we may compare (4.3) with the full NLS estimator (4.1).
Since the exact gradient is

the algorithm (4.3) may still be obtained from (4.1) in the

da, af(o, ¢
- gt(e)at 1> f(a_o)' ’

formal way of deriving PLR estimators, that is, by avoiding
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the filtering with 1/6,(B): £€,(k) = g(k)d,_,(k) = $.(k). The
goodness of this approximation determines the statistical
properties.

Analysis. - Specific analyses of the IPLR algorithm (3.1)
in the hypothesis of stationarity were provided by Stoica,
Soderstrom, Ahlen, and Solbrand (1985) and Hannan and
McDougall (1988). Their conclusions generalize those al-
ready reached in the analysis of the recursive version (3.2—
3.3) by Solo (1978) ‘and Ljung and Soderstrém (1983).
That is, PLR’s by approximating optimal estimators tend
to be inefficient and may not converge. In the sequel, I
prove these results for the WPLR method with informal
but direct arguments.

From the analysis of stochastic approximation schemes
(Tsypkin 1971, p. 56) we know that a sequential algorithm
is consistent if the expectation (in 8,) of the angle between
the direction of the estimator (A) and the gradient of the
objective function (V) is positive. Now, for (4.2) and (4.3)

with a quadratic objective funqtion, we have

Agk) = [8ck + 1) — 8(k)]
: N -1 N
- [2 y,<k)y~:(k)] . 54040
and
o2V a?/2N N
V) = S 2;—-—,(,( 7 JRalk),

so equating (k = N) = t, the condition of convergence
becomes and implies
E[A(5)'V()) | 8] > 0 @ *[0(2)] > 0,

Izl 1 Ve (44
This condition directly extends to. the evolving level of the
conclusion reached in the analysis of PLR algorithms ap-
plied to stationary models. That is, the suboptimal WPLR
scheme converges almost surely only if the polynomial
{6(2)} moves inside a subset 'of the invertibility region, in
which it behaves like d passive filter. For general VIF
models, (4.4) becomes R[G(z)] > 0, |z| = 1V ¢, where
G((*) is defined as in (3.4).

To prove the inefficiency, we use the approach of
Splud (1983) based on the objective function Hy(0) =
3 x,a,/ N, concerning the correlation residuals-regressors
in (4.2). Assume that (4. 4) holds and expand the emplncal
H(t), with ¢ = (k = N), in 0y

0xX, ,
A0 - HI =13 2o+ xgt]
x [6) - 8] —> E[x&1[6() - 6]
(the result E[ox,/00’ - a,] = 0 follows because x, contains
lagged pseudoregressors). Now, since lim tE[H(t) — Hgp
= E[x, x/]6? [t = (k = N)], the asymptotic dispersion
becomes

lim tE[(r) — O]

= E[x, &]7'E[x,, xt]o’E[§, x] 7' > E[£.£/] '0?,
| (4.5)
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Table 4. Results of Iterative WPLR Estimation

s
o

Parameter. - o a, a a, .. Statistic
wolt) - J140E-2 —-.227E-4 921E-7 RSS.
o T@s. (=33 - (@2 937
() B00E—1 —-356E—-2 428E—-4 —.148E-6
o (4.4) (-4.0) 3.7) (-3.4) R?
ai(t) L 378E-1 —544E-3  203E-5 61
(4.9) (—4.0) (3.3)
&i(t) - —451E~1 —.647E-3 240E-5 DW
o (6.3) (~4.1) 83) ° 195

NOTE: t-statistics are in parentheses. Rss denotes residual sum of squares, and DW
denotes the Durbin—Watson statistic.

and the loss of efficiency in passmg from (4.1) to (4.2) is
thus well established.

Example. The VTF system resulting from inserting the
third-order polynomials of Table 3 in the model of Table
2 was tentatively reestimated with the ZXSSQ routine of
the IMSL library, but without success. The failure was
probably due to the high number of parameters to be
estimated (16) and the complexity of the quadratic objec-
tive function constructed with the filtering (3.3). Success
was obtained with the WPLR algorithm implemented on
the TSP package. Denoting the polynomials in vector form
B =Bt =[1,4,P,@0=1,...,4)], a typical
iteration was performed as the following: generate r71,(k)
= t'8,(k) - rit,_1(k) + t'do(k) - X, + @y(K) - X1, 7iro(k)
~=0,and Afk) = y, — m(k) (t = 1, . » N), then

OLS estimate y, = [t'aglx, + [t'@)x,—; + [t'8.],_1(k)
+ [t'dy)A_1(k) + e. In the first iteration (using initial
values of Table 3), ail of the coefficients of the vectors w,
8,, and ¢, had ¢ ratios less than 1.2. The intercepts a,
unimportant for the evolutive behavior, were then deleted,
and surprisingly all of the coefficients turned out signifi-
cant. Convergence was fairly quick (five iterations); esti-
mation results are listed in Table 4 and the implied
parameter functions are displayed.in Figure 4.

Since the VTF system is deterministic in the parameters
and linear in the variables, the classical inferential frame-
work of the stationary models (e.g., see Pierce 1972) ex-
tends directly to it. In particular, comparisons with the

0, 94

0.02
I

!

TF-PARAMETERS

0.02 0:00

40.00 = 60.00  80.00 = 100.00 .+ 140.00
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a

T T
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o
o
E=l

T
120.00
12
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static TF of Table 1 can be made with a simple F test: F
= 3.5 > 2.5 = Fi4(9, 142). This assumes the meaning of
a test on the degree of deterministic evolution of the sys-
tem.

5. CONCLUSIONS

The weakness of the proposed modeling clearly resides
in the impossibility of having a general interpolating func-
tion for the parameters that is able to adapt to the various
situations of evolution and in a‘parimonious manner. Re-
cently, promising numerical-statistical techniques of de-
terministic interpolation, such as nonparametric spline
smoothmg (Silverman 1985) and projection pursuit regres-
sion (Fnedman and Stuetzle 1981) have been proposed.
Nevertheless, in the context of this work their implemen-
tation should be substantially reexamined.

External modelings of the parameters with selutions of
stochastic type, such as fitting the recursive estimates with
vector ARMA models, A(B)I — B)(t) = C(B)e,, over-
come the problem of the rigidity of deterministic time
functions, but they remain conditioned on arbitrary priors
and require the redefinition of the inference. These fea-
tures actually raise questions on the real meaning of these
solutions, since analysis and design of on-line estimators
(PLR, NLS, RIV, EKF) in the presence of evolving pa-
rameters is still an open question.

The advantage of the internal modeling proposed in this
article is that it is completely data-based; that is, the re-
cursive estimation of the system [which requires as priors
B(0), R(0), 1] only represents an intermediate phase.
The possxbnhty of inserting the identified parametcr func-
tions in the model and reestimating their coefficients
on the ongmal data may offset the nonoptimal specifica-
tion of the priors. Finally, the classical inferential frame-
work applies directly to it, with the possnblllty of mak-
ing statistical comparisons with the static version of the
system. The empirical results obtained in the article (a
17.5% reduction of the residual variance with the use of
polynomials) are fairly encouraging and can be further -
improved.

TERS
L 0.60"

0.40

4,00 ' 60.00 @ " "100,00'
TIME ¢ 1973 01 1985

b

T T T
0,00 2000 120.00' 140.00
12

Figure 4. Parameter Functions Estimated on Original Data: (a) w, and wg; (b) 6, and ..
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