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Abstract. This paper develops nonparametric techniques for dynamic models

whose data have unknown probability distributions. Point estimators are obtained

from the maximization of a semiparametric likelihood function built on the kernel

density of the disturbances. This approach can also provide Kullback-Leibler cross-

validation estimates of the bandwidth of the kernel densities. Confidence regions

are derived from the dual-empirical likelihood method based on nonparametric es-

timates of the scores. Limit theorems for martingale difference sequences support

the statistical theory; moreover, simulation experiments and a real case study show

the validity of the methods.
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1. Introduction

This paper develops inferential techniques for dynamic regression models whose

disturbances (noise) have a probability distribution which is totally unknown. In this

case, it is well known that the maximum likelihood (ML) method cannot be applied,

and least squares (LS) can produce inefficient estimates. A possible solution to this

drawback is provided by adaptive estimation (e.g. Bickel, 1982; Kreiss, 1987), which

implements a one-step ML algorithm on the basis of nonparametric estimates of the

scores, computed on LS residuals. The adaptive approach has been extended to

complex dynamic models (e.g. Koul and Shick, 1997 and Ling, 2003); however, it

still suffers by two fundamental problems. The first is that it needs consistent initial

estimates for all parameters; the second one is that it conducts inference only on

the basis of the asymptotic distribution of estimates.

By embedding a kernel estimator of the noise density into the parametric likeli-

hood function, one can obtain a semiparametric functional which can be optimized

either with respect to the regression coefficients of the dynamic model, and the

bandwidth of the kernel density. This approach has a close relationship with the

cross-validation method discussed in nonparametric literature (e.g. Wand and Jones,

1995), and shares its optimality properties. The final result is a semiparametric ML

estimator which allows for significant gain of efficiency and unbiasedness over the

LS one. Simulations quantify this gain about 25% on average.

Also the finite sample inference can be treated with nonparametric techniques

named empirical likelihood (EL, e.g. Owen, 1990, 2001). This method can build tests

and confidence regions without knowing the sampling distribution and is an efficient

alternative to bootstrap. In our context, the EL approach can be directly developed

on gradient and score quantities of the semiparametric estimator, because they con-

stitute martingale difference series. Indeed, Mykland (1995) has extended classical

results of Owen, which were developed for independent sequences, to martingale

series. This solution has computational and analytical advantages over existing EL

approaches for time series, such as the ”blockwise” one of Kitamura (1997) or the

spectral one of Monti (1997).
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2. Point Estimation based on Kernel Likelihood

Let {xt, yt} be the input and the output of a stochastic dynamical system which

is representable through an ARMAX model with orders (p, q; d, b) ≥ 0

yt =
p
∑

i=1

φi yt−i +
d
∑

i=0

δi xt−b−i +
q
∑

i=1

θi et−i + et , et ∼ IID(f(e)) (1)

where b is the delay factor and {et} is a noise process. This linear model is widely

used in economics, environmetrics and engineering for forecasting and control pur-

poses (see Box, Jenkins and Reinsel, 1994). This paper, by assuming the distribution

of {xt, yt} unknown, investigates (1) in terms of nonparametric inference.

Using polynomials in the lag operator L, where Lbxt = xt−b, the model can

also be written in compact form as: φp(L) yt = δd(L) xt−b + θq(L) et, where φp(L) =

1 −∑p
i=1 φiL

i, etc.. On this scheme, two assumptions are made:

Assumption A1. The sequence {et} is independent and identically distributed

(IID), and is independent of {xt}. It has a stationary density f(et) = f(e) which

has zero mean, finite variance σ2
e and finite Fisher information τf . The shape of f(·)

is differentiable but unknown and may be asymmetric and multi-modal.

Assumption A2. The polynomials φp(L), θq(L) have no common factor and are

stable (i.e. their roots lie outside the unit circle in the complex plane), and δd(L) has

bounded coefficients. The input {xt} and the initial values z′
0 = [ y0 . . . yp−1, x−b . . .

x−b−d, e0 . . . eq−1 ] are fixed or come from stationary distributions.

Under these assumptions, the dynamical system (1) is stationary and invertible

(that is, et can be uniquely derived from yt) and is parametrically identified.

2.1. Quasi ML

Using a vector notation, the model (1) can be written in ”regression” form as:

yt = β′zt + et , t = 1, 2 . . . n , (2)

β′ = [φ1 . . . φp, δ0 . . . δd, θ1 . . . θq ] ,

z′
t = [ yt−1 . . . yt−p, xt−b . . . xt−b−d, et−1 . . . et−q ] ,

where zt is the vector of pseudo-regressors and depends on β. In this framework, it
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is natural to apply nonlinear least squares (NLS) to estimate the parameters

β̃n = arg min

[

1

n

n
∑

t=1

e2t (β)

]

(3)

et(β) = yt − β′zt(β)

where n is the sample size. Under the condition f(e) Gaussian, it is well known that

NLS estimator is equivalent to the ML method. For this reason, (3) is also known

as quasi or pseudo ML estimator (see White, 1996).

Assuming differentiability of the residual function et(β), it is easy to show (e.g.

Grillenzoni, 1991) that first derivatives satisfy a the dynamic relationship

ζt(β) = −∂ et(β)

∂ β
=

1

θq(L)
zt(β) (4)

= zt(β) +
q
∑

i=1

θi ζt−i(β)

Hence, the gradient {ζt} is a stationary process under the condition of invertibility

of the model (1); moreover, its past and present values ζt−k, k ≥ 0 are independent

of the innovations et+k. On the basis of the expression (4), one can easily compute

the explicit iterative version of the estimator (3)

β̃
(i+1)

n = β̃
(i)

n +

(

n
∑

t=1

ζ̃
(i)

t ζ̃ ′
(i)

t

)−1 n
∑

t=1

ζ̃
(i)

t ẽ
(i)
t (5)

where ζ̃t, z̃t, ẽt are evaluated at the point β̃
(i)

n . This expression is useful for obtaining

the dispersion matrix of the NLS estimator.

Under the assumptions A1, A2, the estimators (3) and (5) are consistent for

the population value β which minimizes the expectation E[ e2t (β) ]; moreover, it

converges in law as n→ ∞ (see Box et al., 1994 Chap. 7)

√
n
(

β̃n − β
)

L−→ N
[

0 , E
(

ζt ζ
′
t

)−1
σ2

e

]

(6)

The asymptotic dispersion in (6) is equivalent to that of the ML estimator in the

case of f(e) Gaussian; it does not provide, however, the lower bound in the general

case. One may wonder if the efficiency of the NLS method can be improved by

means of nonparametric techniques.
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2.2. Kernel ML

Given the NLS residuals ẽt = (yt− β̃n

′
z̃t), smoothing techniques can be used for

testing, see Azzalini, Bowman and Härdle (1989). For example, the kernel density

f̃κ(e) =
1

nκ

n
∑

t=1

K
(

e− ẽt

κ

)

, e ∈ ℜ

can tentatively is useful to identify the functional form of f(e). In the above, we

just recall that K(·) is the kernel function (a symmetric density with mean zero and

unit variance) and κ ≥ 0 is the bandwidth coefficient.

Kernel techniques have also been used in Adaptive ML estimation to improve

the efficiency of the initial NLS method (e.g. Kreiss, 1987 and Ling, 2003). In this

context, the density f̃κ(ẽt) is used for computing the scores of the likelihood function,

so that a one-step Newton-Raphson estimator could be implemented. However,

the entire procedure requires a number of adjustments (such as discretization of

the initial β̃n, sample splitting of the residuals, a-priori selection of the bandwidth

κ, trimming of the kernel scores ψt, outer-product of gradient computation of the

Hessian, etc.), which actually hinder the efficacy of the method.

To avoid these drawbacks altogether, one can imbed the kernel density in the

likelihood function, and directly optimize the resulting functional. The implied

solution can be termed kernel maximum likelihood (KML) estimator

β̂nκ = arg max

[

1

n

n
∑

t=1

log fκ(et(β))

]

(7)

fκ(et(β)) =
1

nκ

n
∑

j=1

K

(

et(β) − ej(β)

κ

)

In this context, the likelihood function can be viewed as a mixture of densities

defined by the kernel functions. Because the nuisance parameter κ is invariant with

t, it is parametrically identified and can be included in the estimation framework

(7). However, to avoid the trivial solution κ→ 0, the term K(0/κ) must be excluded

from the loss function, so that the estimator becomes

[

β̂nκ , κ̂n

]

= arg max

{

1

n

n
∑

t=1

log

[

n
∑

j 6=t

K
(

et(β) − ej(β)

κ

)

]

− log((n− 1)κ)

}

(8)
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In the absence of β, this approach coincides with the maximum likelihood cross-

validation (MLCV) selection of the bandwidth (e.g. Wand and Jones, 1995, Chap.3),

which is closely related to the minimum Kullback-Leibler distance method discussed

in Bowman, Hall and Titterington (1984). Given possible non-smoothness of the ob-

jective function (8), optimization can be carried out with stochastic search methods,

such as simulated annealing or genetic algorithms.

Having assumed differentiability of f(et), the analytical expression of the scores

of the kernel likelihood function (7) is given by

ξt(β) =
∂ log f(et(β))

∂ β
=
∂ f(et)/∂ et

f(et)

∂ et(β)

∂ β
(9)

= ψ(et) ζt(β)

where ψ(et) = ḟ(et)/f(et) is the score of the noise density and ζt is the gradient of

the NLS estimator. Since ψ(·) only depends on et, it is independent of the values

ζt−k, k ≥ 0 and has zero mean. It follows that the score {ξt} forms a martingale

difference sequence, that is E(ξt | yt−k, xt−k; k ≥ 1) = 0.

As regards the second derivatives Ξt(β) = ∂ ξt(β)/∂ β′, it is well know that the

Fisher information matrix −E
(

Ξt

)

= E
(

ξtξ
′
t

)

. Therefore, we have that n−1∑

t Ξt =

−n−1∑

t ξt ξ
′
t + op(1), and the iterative expression of the estimator of (7) can be

based on the outer-product of gradient computation of the Hessian matrix:

β̂
(i+1)

nκ = β̂
(i)

nκ +

(

n
∑

t=1

ξ̂
(i)

t ξ̂′
(i)

t

)−1 n
∑

t=1

ξ̂
(i)

t (10)

where ξ̂t = ψ(êt) ζt(β̂nκ). This algorithm requires the equations (3), (4) and a

nonparametric estimator for ψ(·); in the case of Gaussian kernels, we have

ψ̂κ(e) =
ˆ̇fκ(e)

f̂κ(e)
=

∑n
j=1 K

(

e−êj

κ

) (

êj−e

κ2

)

∑n
j=1 K

(

e−êj

κ

) (11)

which looks like a kernel regression between independent processes.

In practice, however, the computation of β̂nκ is usually performed by direct

minimization of the functionals (7)-(8) with search methods; the algorithm (10)-

(11) is useful for estimating the dispersion matrix and for obtaining the recursive

(on-line) version of KML : β̂κ(t). As in Grillenzoni (1991), this can be obtained by
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equating number of iterations and number of processed data, namely (i = n) = t; by

recursively computing the gradient ζ̂(t) = ẑ(t) +
∑q

j=1 θ̂j(t) ζ̂(t− j), and estimating

the score ψ̂(t) with a sequential kernel density f̂κ(t) (see Grillenzoni, 2000). In this

context, the bandwidth can heuristically be selected on the basis of a error variance,

as κ̂(t) = σ̂e(t)/t
1/5 (see Wand and Jones, 1995).

2.3. Asymptotics

The analysis we outline in this section is different from those available in the

adaptive ML literature (e.g. Bickel, 1982; Kreiss, 1987), which require the symmetry

constraint on f(e), a consistent initial estimator of β and perform various numer-

ical adjustments, such as discretization, sample splitting and trimming (see Ling,

2003) . Our heuristic idea is that because β̂nκ maximizes the functional ℓnκ(β) =

n−1∑n
t=1 log [ fκ(et(β)) ], which tends to E(ℓnκ), then β̂nκ should converge to the

value β0 which maximizes E(ℓnκ). As in the classical nonparametric estimation,

analysis must be performed under the conditions κ→ 0, nκ→ ∞, which allow the

kernel estimate fκ(·) to converge uniformly to the unknown noise density. When

this happens, the kernel likelihood function converges to its parametric version, and

the KML estimator converges to the parametric ML solution.

We start by assuming identifiability, on the parameter space B ⊂ ℜp+q+d+1, of

a stationary and invertible ARMAX model in the estimation framework (7).

Definition 1. Suppose that n−1∑n
t=1 E

[

log fκ(et(β))
]

has a maximum at β0

for each n. Let Θ0 be an open sphere centred at β0 with fixed radius ρ > 0, and let

Θc
0 be its compact complement in B. The maximizer β0 is identifiably unique iff

inf
n

[

min
β∈Θ

c

0

(

1

n

n
∑

t=1

E
[

log fκ(et(β0))
]

− 1

n

n
∑

t=1

E
[

log fκ(et(β))
]

)

]

> 0

This statement is inspired by Definition 3.3 of White (1996, p.28).

Now, let us assume that the kernel likelihood function in (7) satisfies the uniform

law of large numbers (ULLN) for dependent processes.

Lemma 1. If there exists a function D : ℜ → ℜ+ such that | log fκ(e(β)) | ≤
D(e(β)) for all β ∈ B and e ∈ ℜ, and such that E(D) =

∫

ℜD(e)f(e) de <∞, then
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it follows that E
[

log fκ(e(β))
]

is continuous on B and, uniformly on B, one has

sup
n

(

1

n

n
∑

t=1

log fκ(et(β)) − E
[

log fκ(e(β))
]

)

= op(1)

Proof. This result follows from Theorem A.2.2 in White (1996, p.351).

The boundedness condition stated in the Lemma is generally assumed in the

likelihood literature to ensure consistency of ML estimates. We assume that it holds

even for the model (1). The consistency property can now be established.

Theorem 1. Under the assumptions A1, A2 for model (1), the boundedness

condition stated in the Lemma 1, and assuming that β0 is the identifiably unique

maximizer of n−1∑n
t=1 E

[

log fκ(et(β))
]

for every n, then the KML estimator (7)-

(10) is such that

(

β̂nκ − β0

)

= op

(

1/
√
nκ
)

as κ→ 0 , nκ→ ∞

Proof. This result is a corollary of Theorem 3.5 in White (1996, p.29)

Having established consistency, one can now derive the asymptotic distribution

together with the expression of the dispersion matrix.

Theorem 2. Under the same assumptions as Theorem 1, and the conditions

that log fκ(et(β)) is twice continuously differentiable with score (9), the matrix

E
[

ζt(β) ζ ′
t(β)

]

is positive definite for any |β − β0| < ǫ and τf = E[ψ2(et)] < ∞,

then the KML estimator (7)-(10) is such that

√
nκ
(

β̂nκ − β0

)

L−→ N
{

0 , E
[

ζt(β0) ζ′
t(β0)

]−1
τ−1
f

}

(12)

Proof. We adopt the standard method based on a Taylor expansion of the

first-order condition of (7) about β0. Hence:

0 =
1

n

n
∑

t=1

ξt(β̂nκ) =
1

n

n
∑

t=1

ξt(β0) +

[

1

n

n
∑

t=1

Ξt(β̄)

]

( β̂nκ − β0 )

where Ξt(β) = ∂ ξt(β)/∂ β′ is the matrix of second derivatives and β̄ ∈ (β̂nκ,β0)

is an intermediate point. Introducing the coefficient κ, and using the outer product
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of scores for computing the Hessian: n−1∑

t Ξt = −n−1∑

t ξt ξ
′
t + op(1), one has

√
nκ ( β̂nκ − β0 ) =

(

1

nκ

n
∑

t=1

ξ̄t ξ̄
′

t

)−1
1√
nκ

n
∑

t=1

ξ0
t + op(1)

Having ξt = ζt ψ(et), the term (nκ)−1/2∑

t ξt on the right hand side of the above

is suitable for the application of the central limit theorem for stationary martingale

difference processes (see White, 1996). Finally, by the consistency of β̄, the ergodic

theorem and the conditional independence of ζt, ψt one has
(

1

nκ

n
∑

t=1

ξ̄t ξ̄
′

t

)

P−→ E0

(

ξt ξ
′
t

)

= E0

(

ζt ζ
′
t ψ

2
e

)

= E0

(

ζt ζ′
t

)

E
(

ψ2
e

)

as κ→ 0, nκ→ ∞, where E0(·) means that the variables are evaluated at β0. The

result (12) then follows by the continuous mapping theorem.

Remark 1. By comparing (6) and (12), one can state that KML is more

efficient than NLS, because σ2
e ≥ 1/τf , and it better approaches the parametric ML

solution. This does not mean, however, that finite-sample properties and/or the

speed of convergence of the semiparametric estimator are better in all situations.

For example, if f(e) is Gaussian, then NLS coincides with the exact ML estimator

and, therefore, its relative efficiency may be greater.

In the literature on adaptive estimation (e.g. Ling, 2003), the main effort was to

establish the absolute (Cramer-Rao) efficiency of the proposed one-step estimators.

In general, this can be achieved under the condition of symmetry for f(e). In this

paper, this constraint is not necessary, and we are mainly interested to compare the

(relative) performance of the KML estimator with that of the NLS, in particular in

finite samples. The simulations experiments of the next section, will show that the

kernel method significantly outperforms the least squares, with the sole exception

for t-student innovations. This is due to the fact that, under Gaussianity, the NLS

is equivalent to the parametric ML estimator and therefore is more efficient than

KML for all n. The inefficiency of KML may arise from the fact that it implicitly

involves the estimation the entire noise density; furthermore, in (8) the parameters

β are jointly estimated with the bandwidth, and in (10) the Hessian matrix is

approximated by the mean outer-product of gradient.
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3. Confidence Regions based on Empirical Likelihood

Given the asymptotic distribution (12), statistical inference for the regression

parameters is a relatively simple task, which requires estimation of the dispersion

matrix. Using (11) and (12), a natural estimator is given by

V̂ n =

(

n
∑

t=1

ζ̂t ζ̂
′

t

)−1

τ̂−1
f , τ̂f =

1

n

n
∑

t=1

ψ̂2
κ(êt)

and 95% the confidence intervals become β̂i ± 1.96
√
v̂ii. However, probability cov-

erage of these intervals is not exact, because the asymptotic result (12) may not

hold for finite samples. Consistently with the nonparametric nature of the point es-

timates developed in Section 2, more reliable confidence regions can be constructed

with the empirical likelihood (EL) approach of Owen (1990, 2001).

We recall basic EL principles by following the estimating equations approach

(e.g. Qin and Lawless, 1994). Let {zi}n
1 be independent observations from the

distribution F (z; θ), z ∈ ℜk, θ ∈ ℜm, and suppose that information about θ is

available through m estimating functions g(z, θ) = [ g1(z, θ) . . . gm(z, θ) ]′, which

satisfy the constraint E[ g(z, θ) ] = 0. In this context, maximization of the EL func-

tion Ln(F ) =
∏

i πi (where πi = P(z = zi) are multinomial probabilities assigned to

the observations), subject to the constraint
∑

i πi g(zi, θ) = 0, leads to the solutions

1/πi = n [ 1 + λ′ g(zi, θ) ], where λ are Lagrangian multipliers.

In the absence of parametric constraints, the EL function is maximized by the

weights πi = 1/n; thus, the EL ratio Rn(F ) =
∏

i nπi takes the profile expression

logRn(θ) = −∑i log [ 1 + λ′ g(zi, θ) ]. Now, the fundamental EL theorem (Owen,

1990 p.91) states that the statistic −2 logRn(θ) → χ2(m) in law. This can be used

for inferential purposes; for example, the (1 − α) confidence region is given by

Cα =
{

θ : 2
n
∑

i=1

log [ 1 + λ′ g(zi, θ) ] ≤ χ2
1−α(m)

}

(13)

where the multipliers satisfy the constraint

Dλ =
{

λ :
n
∑

i=1

g(zi, θ)/[ 1 + λ′ g(zi, θ) ] = 0

}

(14)

These coefficients can also be computed as λ(θ) = arg max
∑

i log [ 1 + λ′ g(zi, θ) ],

because first order conditions on the latter provide the equation in (15).
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These results were obtained under the assumption of independent sequences and

could not be applied to autocorrelated data, such as time series. Kitamura (1977)

and Monti (1997) have extended the basic EL theorem to stationary dependent

data, by working on blocks of observations and periodogram ordinates, which are

nearly independent. Both these approaches are computationally demanding and are

extraneous to the point estimators developed in the previous section. Instead, we

prefer to follow the dual likelihood approach of Mikland (1995), which extends the

EL theorem to martingale difference processes.

As we have seen in the previous section, typical gradient functions { (ζtet), ξt }
involved in the iterative estimators (5) and (10), are martingale difference under

the true parameters β. Moreover, the martingale mn(β) = n−1∑

t ξt(β) (score of

the kernel likelihood function), provides m = (p + q + d + 1) estimating equations

and E[ ξt(β) ] = 0. These quantities can be directly used to construct the likelihood

ratio statistic, which has a structure similar to (13) and (14):

− logRn(β) =
n
∑

t=1

log
[

1 + λ′ ξt(β)
]

(15)

λ :
n
∑

t=1

ξt(β) /
[

1 + λ′ ξt(β)
]

= 0

in fact, maximizing the ratio Rn =
∏

t nπt with respect to πt, subject to the con-

straint
∑

t πt ξt(β) = 0, provides (15). In this framework, it is worth noting that

the value which maximizes (15) is just the kernel ML estimator (7).

In the Mykland’s view, equation (15) is a dual likelihood, in the sense that,

regarding β as fixed, the dual parameters λ become the unknown coefficients and

the resulting function still shares typical features of a log-likelihood. Thus, letting

ℓβ(λ) = − logRn(λ|β) =
n
∑

t=1

log
(

1 + λ′ ξt

)

(16)

it follows that ∂ ℓβ(λ) /∂ λ |λ=0 =
∑

t ξt is also the score of the dual likelihood,

and inference on β may proceed through λ. For example, testing for β = β0, can

be carried out by performing a likelihood ratio test with ℓβ0
(λ) on the hypothesis

λ = 0. This procedure has significant advantages in terms of accuracy with respect

to classical score-type tests (e.g. Mykland, 1995 p.403).
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Now, the extension of the EL theorem operated in the Mykland’s approach con-

sists of proving that the dual likelihood ratio statistic (16) has the same asymptotic

properties as the classical score-type statistics. As before, consider first and second

derivatives of ℓβ(λ) with respect to λ evaluated at the point 0, and construct the

quadratic score (Wald) statistic

Wn(β) = −ℓ̇β(0)′ ℓ̈β(0)−1ℓ̇β(0) =
n
∑

t=1

ξ′
t

( n
∑

t=1

ξtξ
′
t

)−1 n
∑

t=1

ξt

Now, supposing thatWn is tight and that ξt is asymptotically negligible with respect

to the smallest eigenvalue ρn of the matrix −ℓ̈β(0) (namely supt ‖ξt‖/ρn = op(1)),

it can be shown that the dual likelihood ratio statistics satisfies

sup
λ
ℓβ(λ) =

1

2
Wn(β) + op(1)

where the supremum is taken in a neighborhood of zero where Lβ(λ) is nonnegative

(see Mykland, 1995, p.407). Finally, applying the central limit theorem for martin-

gale sequences it can be shown that Wn(β) → χ2(m) in law, and the extension of

EL theorem follows from the definition in (16).

This result legitimates the use of equations (13)-(14), with gi replaced by ξt, in

building EL confidence regions for the parameters of the model (1). The dual nature

of the approach can be appreciated in the computational aspects:

Step 1. Select a grid of values of β in the parameter space B of the model (1)

and generate the corresponding series ξt(β) with the formula (9).

Step 2. Solve the problem λ = arg max
∑

t log ( 1 + λ′ ξt ), for each series {ξt}.
Step 3. Select the pairs { ξα

t ,λ
α } which satisfy 2

∑

t log ( 1 + λ′ ξt ) ≤ χ2
1−α(m).

The confidence region (13) is then given by the set of parameters corresponding to

these pairs, namely Cα = {β : ξt(β) = ξα
t , λ(β) = λα }. This region is ”centred”

on the point

β̂n = arg max −
n
∑

t=1

log
[

1 + λ(β)′ ξt(β)
]

(17)

which represents the maximum EL estimator and coincides with (7) by first order

conditions. Finally, it should be noted that Bartlett corrections of the nominal

confidence level of the region Cα can be performed as in Monti (1997).
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4. Numerical Studies

4.1. Simulations

To illustrate the methods of the previous sections, we perform simulation ex-

periments and applications to real data. We test point estimators on a first order

ARMAX system with chi-square, uniform, t-student, and normal mixture innovations

yt = .5 yt−1 + .5 xt−1 + .5 et−1 + et , xt = .5 xt−1 + ut (18)

f(e) = χ2(5), U(−5, 5), t(5),
1

2

[

N(−3, 22) + N(2, 1)
]

, f(u) = N(0, 22)

all densities were centred, and {et, ut} are mutually independent. We compared the

performance of the NLS estimator (3), with those of the KML methods (8) and (7);

the latter was implemented with the heuristic design κ̂∗n = σ̂e/n
1/5, where σ̂2

e is the

sample variance of NLS residuals. As is known (e.g. Wand and Jones, 1995 p.60),

this solution minimizes the integrated mean squared error of the kernel density :
∫

E[f̂κ(e) − f(e)]2de, when both f(e), K(·) are Gaussian.

In the experiment, the sample size and the number of replications were n = 200

and m = 1000 respectively. Summary statistics, such as root mean squared errors

sβ =
[

m−1∑

i(β̂i − β0)
2
]1/2

and mean biases dβ =
(

m−1∑

i β̂i − β0

)

are reported in

Table 1. As a general result, we can note that KML methods significantly outperform

the NLS one, especially when the noise density is asymmetric, bimodal or flat (i.e.

non-Gaussian). This conclusion is true for both indices s, d, with the sole exception

for the index sβ in the third experiment. Specifically, in the presence of t-student

innovations, NLS tends to have the smaller MSE, and (8) is preferable to (7). On

average, however, the two KML methods perform similarly, and this leads to prefer

the solution (7) with the design κ∗n = σe/n
1/5, both in view of the computational

simplicity and by the normal distribution of its estimates.

The better performance of NLS in the case of bell-shaped densities is a conse-

quence of the fact that, under Gaussianity, it is equivalent to the full ML estimator

for any n (whereas it is only true asymptotically for KML). This conclusion cannot,

however, be extended to any symmetric f(e), as the results of the simulation with

Uniform innovations show. In general, the more the distance from the Normal dis-
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tribution, the more the gain of efficiency of KML over NLS. In view of this situation,

a sensible estimation strategy is to perform tests of Gaussianity to least-squares

residuals, before applying the kernel method.

Table 1. Results of the simulation experiment applied to the system (18). sβ

are root mean squared errors, dβ are mean biases, and s̄, ¯|d| are their averages over

the 3 parameters. κ̄ is the mean value of the bandwidths, where in (7) they are

estimated as σ̂e/n
1/5. Finally, (N+N)/2 means mixture of normal densities.

f(e) β̂n sφ sδ sθ s̄ dφ dδ dθ
¯|d| κ̄

χ2(5) (3) .0742 .1077 .0762 .086 -.0154 -.0018 .0096 .009 .

” (7) .0600 .0860 .0610 .069 -.0093 .0024 .0051 .006 1.1437

” (8) .0648 .0959 .0671 .076 -.0078 .0019 .0023 .004 .7975

U(-5,5) (3) .0721 .1044 .0775 .085 -.0114 -.0033 .0008 .005 .

” (7) .0436 .0648 .0469 .052 -.0040 -.0003 -.0004 .002 1.0522

” (8) .0436 .0574 .0458 .049 .0011 .0009 -.0036 .002 .2369

t(5) (3) .0548 .0469 .0742 .059 -.0087 -.0017 .0042 .005 .

” (7) .0735 .0624 .1039 .079 -.0042 -.0006 -.0028 .003 .4677

” (8) .0592 .0490 .0877 .064 -.0060 -.0007 .0001 .002 .5766

(N+N)/2 (3) .0735 .1030 .0794 .085 -.0112 -.0055 .0002 .006 .

” (7) .0412 .0574 .0447 .048 -.0024 -.0012 -.0003 .001 1.0753

” (8) .0510 .0714 .0539 .059 -.0008 .0009 -.0028 .001 .4786

For the sake of completeness, we also estimated the kernel densities of the inno-

vations yielded by the simulations of Table 1. At the ith replication, the residuals

êit were generated with the coefficients φ̂i, δ̂i, θ̂i, then f̂iκ(e) was computed with the

bandwidth κ̂i. This was carried out only for the method (8), in order to asses the

goodness of the direct bandwidth estimation. Mean values f̄(e) = m−1∑m
i=1 f̂iκ̂(e)

over the first m = 100 replications are displayed in Figure 1. As we can see, they

reproduce well the underlying functions.
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Figure 1. Mean values of the kernel densities of the residuals of the simulations

of Table 1, obtained with the method (8).
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Finally, we investigate the sample distributions of the parameter estimates in

order to check the validity of the result (12) and to get insight on the behavior

of the bandwidths. In general, the regression coefficients φ̂i, δ̂i, θ̂i have a normal

distribution, whereas those of κ̂i are close to normality only in the case of the

heuristic design σ̂e/n
1/5. Instead, when the bandwidths are estimated with the

method (8), they tend to follow either a χ2 distribution or a density which is related

to the underlying f(e). While the first occurrence is theoretically supported by

the analysis of Chiu (1990), and by the fact that the role of κ in (8) is similar to

a variance, the second situation is unexpected, and largely unexplored. Figure 2

displays these results by means of kernel densities computed on the estimates (8) of

Table 1 with the smoothing coefficient κ̂∗m = σ̂κ/m
1/5.
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Figure 2. Kernel densities of the bandwidth estimates κ̂i obtained with the

method (8) in the simulation experiments of Table 1.
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4.2. Application

To illustrate the inferential procedure based on kernel empirical likelihood, it is

useful to consider an application to a real case study. We consider Series A of Box

et al. (1994, p.86) which consists of the uncontrolled concentration of a chemical

process measured every two hours; total number of observations is n=197. Plot of

the centred series yt = (Yt − Ȳ ), together with its kernel density, are provided in

Figure 3 (a,b); they show some departures from stationarity and gaussianity. We

have retained the model structure identified by Box et al. (1994, p.186), and we

have applied estimators (8) and (3), obtaining

KML : yt = .905 yt−1 − .565 et−1 + et κ̂ = .160 (19)

NLS : yt = .863 yt−1 − .486 et−1 + et σ̂2
e = .098

these estimates are very similar, and confirm the results of Box et al. (1994, p.196).

Figure 3 (c,d) show the residuals of the first model and its kernel density; in this
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case, the hypotheses of stationarity and gaussianity are more plausible.

Figure 3. Plot of series { yt, êt } and their kernel densities for the model (19).
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Subsequently, we have constructed the EL confidence regions for the pair (φ,−θ),
at the nominal level 95%, based on the estimates in (19). The two solutions mainly

differ from the structure of their scores: ξt = ζtet, ζtψt. The score of the noise

density ψt was computed as in (11), by using the bandwidth estimate in (19), which

is close to the heuristic solution σ̂e/n
1/5 = 0.21. The results are presented in Figure

4 (a,b), and display a significant departure from the asymptotic ellipsoidal shape.

The region corresponding to the KML scores is smaller than that of NLS, but its

size increases as the value of κ, and we used the smaller value in (19). Finally it

is interesting noting that point estimates in (19) are nearly at the center of the

two regions, confirming the relationship between kernel and empirical likelihoods as

described by the equation (17).
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Figure 4. EL confidence regions of level 95% for the parameters of (19).
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5. Conclusions

In this paper we have presented a complete inferential procedure for time-series

models, based on nonparametric likelihoods. Point estimation is based on the maxi-

mization of kernel likelihood functions built on the regression residuals. Confidence

regions are obtained from the empirical likelihood approach applied to the kernel

scores of the point estimates. Asymptotic analysis, obtained from limit theorems

of martingale difference sequences, and simulation experiments with non-Gaussian

innovations, demonstrate the validity of the methods. Only in the presence of bell-

shaped symmetric densities and finite sample sizes the least squares method may

be more efficient. Therefore, before applying nonparametric likelihood solutions,

it may be advisable to perform tests of Gaussianity on the least squares residuals.

Directions for further research are represented by the development of recursive (on-

line) versions of the KML estimator (10) and the asymptotic analysis of the direct

bandwidth estimates in (8).
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