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Abstract. A unified treatment of non-linear estimation, pseudolinear regression and
stochastic approximation for open-loop transfer function models is provided. Pseudo-
linear regression techniques are used to derive the recursive non-linear least-squares
estimator, avoiding the methodological problems implicit in traditional derivations.
Stochastic approximation analysis is used to investigate in a direct manner the
conditions of convergence and consistency of both iterative and recussive algorithms.
The various methods are compared using data for an industrial process.
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1. INTRODUCTION

In this paper we provide simplified techniques of derivation and analysis,
sufficiently self-contained, for the recursive estimation of the parameters in
transfer function (TF) models (Box and Jenkins, 1970, Part III).

This class of non-linear models has been widely used for representing, in
the input-output context, dynamical stochastic systems by means of rational
polynomials. Although originally designed for the control of industrial proces-
ses, it has achieved great success in forecasting economic time series and has
played a crucial role in the analysis of causality. Among the estimation
methods, the recursive (or on-line) technique, by working on the sequential
processing of the data, has the advantage of greater computational speed and,
more important can track changes of parameters (non-stationarity). In this
way it constitutes the building block for adaptive predictors and regulators.

Hitherto, recursive algorithms have been extensively applied and developed
for ARMAX models. Specialized approaches for TF models are those of
Young (1984) and Sherif and Liu (1987), based respectively on the use of
refined instrumental variables and the extended Kalman filter, neither of
which are easy to implement and manage. In Section 3 we use pseudolinear
regression techniques (Spliid, 1983; Hannan and McDougall, 1988) to derive
the recursive non-linear least-squares estimator. This approach, which is
extremely simple and natural, avoids the methodological problems which arise
in the typical realization of non-linear on-line algorithms either by adapting
their iterative (off-line) version (Goodwin and Sin, 1984; Ljung, 1985) or,
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worse, by utilizing the Kalman filter framework (see Appendix A1 for a note
of criticism).

The two techniques (ODE and MCT) available today for the analysis of
asymptotic properties, in particular convergence and consistency, are ex-
plained in detail by Kushner and Clarke (1978), Solo (1978) and Ljung and
Sederstrgm (1983), but are very difficult to follow and apply to the various
algorithms. In Section 4 we propose a procedure which is a straightforward
extension of the conditions developed in the analysis of the Robbins-Monro
and Kiefer-Wolfowitz stochastic approximation schemes (Kashyap et al.,
1970). The approach, although informal, is direct and can be applied either in
recursive or iterative methods.

The paper ends with an extended empirical example based on the Box-
—Jenkins ‘gas furnace data’. We shall show the tracking capability of recursive
methods in the presence of parameters that change sharply, improving the
statistical fitting almost without limit.

2. INITIATION AND IDENTIFICATION

Let us consider a bivariate stochastic process {x,, y,} stationary in covariance
with a cross-covariance function y,,(k) which is null for k<b=0 and
absolutely summable for & = b. In hypotheses of Gaussianity and zero mean,
by the linearity of the regression and making use of rational polynomials, we
obtain the parsimonious representation

- v, = ‘;’((g)) Zg; a, ~ IN(O, o?) 2.12)
ARMA ¢(B)x, = G(B)e,, e ~IN(Q, 72) (2.1b)

where (6, w, ¢, 6, $ 9) are linear polynomials, with real coefficients of
degree (r, s p, q, P's @) < o respectively, B is the backshift operator and b
is the delay (B®x, = x,_,). Some structural restrictions are needed in order to
ensure the stability and the structural identifiability of the whole system:

[6(z), ¢(2), $(2)] #0, |o(z) <> inlz| <1
[8(2), 6(2), ()] #0, Jo(@)| <o inlzl=1
[6(0), ¢(0), 6(0), $(0), FO)] =1, @O0 #1,b=0
[(2), 8(2)], [6(z), ¥(2)], [ B(2), & (2)] relatively prime.

That is, the monic polynomials are stable and the non-monic polynomial is
‘bounded’.

An equivalent representation of the TF which will be very useful in the
context of the paper is the so-called pseudolinear form (Solo, 1978). To
introduce it we first split (2.1a) into two subsystems y, = m, + n,, where



ITERATIVE AND RECURSIVE ESTIMATION OF TRANSFER FUNCTIONS 107

(@ + oyB + ... + o,B)

e (1-6B-..-6B) = = ™ =&m,_, + o'x,_, (22a)
(1+BIB+...+6qu) & + o +a (2.2b

n, = a, — = - - .
¢ (1—¢lB—...—¢po) t n, n,; a1 + a; ( )

with m;_ =(my_,...m,,), & =(6...6,) etc. Now recomposing the
above, maintaining the vector notation, the compact ‘linear’ expression of
(2.1a) becomes

» = ﬁ’zt(ﬂ) + ay, z‘(ﬁ) = [m;—la x;—b; n;—la a;—l] (23)

where f =[§, &', ¢, 8'] is the vector of parameters and z,(f) is the vector
of pseudolinear regressors containing lagged variables starting in general with
t—1.

A third representation useful in signal processing and control is the state
space. This structure for TF systems has not been treated in the literature
but, following standard results (Kalman, 1963), it can easily be recovered.
Indeed, if we define the companion matrices A = [8:1;_,], k = max(z, s + 1),
® = [¢:1,_1], h =max(p, g + 1) and the vector 8’ =[1, #], a simple Mar-
kovian form for (2.1) is given by

A O ©
Wep1 = (0 d)) w, + (0) Xi—ps1 + (%) Ayl
y: = (1o':10")w,

where w) = [wl... w¥... wk*"]is the state vector.

In the next section we shall assume that the orders (r, s, b), (p, d, q) of the
TF are known and we shall consider the estimation of its (r +s+ 1+ p + ¢q)
parameters with a bivariate sample of size N :{Y, X,}¥. To introduce the
treatment, in what follows a procedure of initiation-identification similar to
that of Poskitt (1989) is given. A substantial simplification is afforded by
utilizing the results of Priestley (1983) on the separability of the estimates
(8, ), (9, ).

The general philosophy of the procedure is that of pseudolinearity. In
practice, it is recognized that a dynamic system can be approximated by a
long linear model; moreover, in the non-linear estimation of (2.1) what is
really needed in passing from one iteration to another is z,(*) and not . This
framework enables calculation to be greatly simplified since only linear
algorithms are involved. It works on every dynamic system (vector ARMA,
simultaneous TF;), and also on some models with non-linear variables such as
the bilinear models.

StEP1 (PRELIMINARY ESTIMATION OF ¢, 8). Define the rational functions
W(B) = o(B)/&(B), w(B)= ¢(B)/6(B) and rewrite (2.1a) as m(B)y, =
W B)m(B)x,-, + a,. Since n, =y, — V(B)x,_, and B) = Z,v;B’, the autoco-
variance function of {n,} satisfies (see Appendix A3 for the proof)
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Ynn(k) = Yyy(k) - {kaxy(b) + 'Vk+1}'xy(b + 1) + .. '}'

Clearly, if {v;} decays rapidly (i.e. 6(B) has roots far from the unit circle),
we have 7,,(k) =1y,,(k) for all k; in this way m(B) can be preliminarily
identified-estimated on the observable series {y} utlllzmg Steps 3 and 4
below.

STEP2 (ESTIMATION OF 6, ®). Having obtained #(B), pre-whiten the
observable series 7(B)y,= ¥,, ¥ (B)x,= X, so that ¥, =W B)X,_, +a,,
and form the linear system

6r(B).Vt = ws(B)’x't—b + ﬁt‘ . (24)

Although {d,} is weakly correlated, the estimates of the parameters in the
above are consistent in the absence of feedback y,— x, (Priestley, 1983).
Thus the identification of the orders (7, s, b) can be consistently carried out
with the criterion :

log (N — b)

g 0= (r5, b) <(log N)*

mln mm BIC(r s|b) =log F% + (r + 5)

where 0<c<w® provides a bound and &2 follows from the ordinary
least-squares (OLS) estimation of (2.4). The sequential minimization is
introduced to simplify the calculations.

STEP3 (PRELIMINARY ESTIMATION op z,()). Having obtained (7,§,5),
(7 = ®/8), compute M, = ¥(B)x,_,, A,=y,— M, as in Box and Jenkms
(1970, p. 389) and then estimate {a,} w1th a long autoregression

¢, (B)A, = af, p* < {log(N - b)}c~

The optimal order can be selected as in Spliid (1983) by setting p* = (p + @),
where the latter are identified on the autocorrelation function (k) and
partial autocorrelation A (k) of #,, or as in Hannan and Rissanen (1982) with
the BIC(p*) criterion. However, since a* must simply be a white noise in
statistical terms, p* <can be <chosen in such a way that
[P(K), A(K)] < 2/(N = b — k)2 for k> p*.

Ster4 (EsTiMATION OF ¢, 6). Having obtained 7,, 4% form the pseudoli-
near model

f, = {¢,(B) — 1}A, + {6,(B) — 1}at + q, 2.5)
and identify (p, ¢) by minimizing ‘

BIC(p, q) =log 8% + (p + q){log(N - b)}/(N b)
with OLS.
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SterS. If the roots of the monic polynomials of (2.1) are far from the unit
circle, the estimates B’ = (&', @', é’ g) available at this stage tend to be
consistent: anyway they are not efficient. A natural way to proceed is to treat
B as the initial value for iterative Gauss~Newton algorithms. Indeed, under
Gaussianity non-linear least-squares and maximum likelihood methods are
asymptotically equivalent in single-equation models.

Some important remarks are now necessary in order to justify the method.

(i) Priestley (1983) has shown that the estimates of V(B) yielded by the
minimization of the two different functionals J; =2N,{y, — (B)x,_;}>,
J, = ZX, [#(B){y, — A B)x,-,}}* are asymptotically equivalent in the absence
of feedback. Notice that Pierce (1972) had already shown that in the second
estimation #(B), ¥(B) are asymptotically independent. These properties
actually make Step 1 unnecessary so that its major motivation is the gain of
efficiency in the estimation of Step 2. Indeed, filtering the series {x,, y,} with
the same operator 7,(B) reduces the autocorrelation of the residuals 4, on
the one hand, but on the other hand leaves unchanged the impulse response
function W(B)B® = v,,(B)/.(B).

(ii) Assuming that Steps 1 and 2 provide consistent estimation of #,,
following Hannan and Kavalieris (1984, p.274) we can show that the value

p* < {log(N — b)}* that minimizes the Bhansali information criterion (BIC)
at Step 3 must satisfy the relationship p* ~log(N — b)/(210g|p,|) almost
surely (a.s.), where p, is the ‘greatest’ root of BO(B) Now, if p, is near the
unit circle and N is not very large, the size of p* obtained in practice is
underestimated and the values of (p, q) selected with BIC at Step 4 turn out
to be overestimated (see also Poskitt, 1989, p. 36). Furthermore, since (2.5) is
a pseudolinear regression, such that it generally converges only when p, is far
from the unit circle (see Section 4), the estimates ¢, @ could in turn be
non-consistent. In view of these problems, Poskitt (1989), like Hannan and
Kavalieris (1984), delayed the selection of the orders with
BIC(r, s, p, q|b = 0) until Step 5 of the Gauss-Newton estimation.

(iii) Steps 1-4 would then provide only a suitable method of initiation for
TF models which were already identified. In this context, however, we
emphasize that selection strategies based on information criteria (AIC,
BIC,MDL, LIL etc.) strongly rely on a hypothesis that a true system (2.1)
exists. If, on the contrary, the model generating the data contains unstable
factors (1 — B)?, irregular operators w(B)* = (wy + w;B* + w,B**" + .. ) or
periodic filters ¢(B*) = (1 — ¢,B* — ¢,B** ~ .. .), then good identification
results can be achieved with classical non-parametric methods based on the
inspection of sample correlation functions.

3. ITERATIONS AND RECURSIONS

In this section we derive the algorithms for non-linear least squares (NLS)
and pseudolinear regression (PLR) in the iterative (I) and recursive (R)
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versions, showing their algebraic connections. Acronyms will be set on the
left of the corresponding formulae when appropriate.

Let us assume a loss function of the quadratic type which recalls the sample
variance of the one-step-ahead prediction error:

7 _iﬁz
min ~NB) = N ai(P)

t=1
p’ =[61.;.5,,a)0,w1...ws, ¢1"‘¢P’ 01 SN Bq] (3.1)

In numerical analysis, the typical derivation of the iterative Gauss—Newton
estimator operates through a second-order Taylor expansion of Jy and some
approximations (not always acceptable) on the matrix of second-order deriva-
tives. A more satisfactory and simple approach may instead consider a
first-order expansion of a, in B and then apply the OLS method iteratively:

a(B) ~ a(B) - (B - B)&(P) (3.22)

-1 N

N
1-ns Pk +1) - k) = {21 &(k)é:(k)} 21 §.(k)a (k) (3.2b)

It is easily seen, by substituting (3.2a) into J and by the properties of OLS,
that this derivation is consistent with the given problem of minimization.

The implementation of the algorithm (3.2) provided by Box and Jenkins
(1970) was essentially based on the numerical evaluation of the gradient §,
obtained (as in Kiefer-Wolfowitz schemes) with perturbation of the para-
meters and a three-step filtering procedure for computing the residuals 4,. An
equivalent estimator based on the analytical evaluation of the derivatives
follows by generalizing Stage 3 of the algorithm of Hannan and Rissanen
(1982) for ARMA models. Utilizing (2.2), we can show by means of standard
calculus that

da, ¢(B)

T 38, 6(B)5(B)
3a, _ @(B) '

" Bw;  8(B)&(B) b

§(B) = 1 (3.3)

da, _ 1

T 39, 6(B) "
da, 1

|~ %6,  6(B) it

‘The computation of the gradient thus consists in a filtering operation on
observable (x), auxiliary (m, n) and non-observable (a) quantities. This
feature, allowing for the back-forecasting generation of the initial ‘regressors’
§_,, z_,, guarantees that (3.2) will have the same statistical properties as the
full maximum likelihood estimator (Pierce, 1972; Poskitt, 1989).

Using a vector notation, it is now readily seen from (2.3) and (3.3) that
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. ¢(B) 1 ]
{(B) = G(B)z,(p), G(B) = diag| ———=—..;. . ——|.
In this context the PLR estimator can be formally derived from the NLS
estimator by approximating &, = z,, i.e. by avoiding the faltermg with G(B).
Indeed, since at an iterative level

a k) =y, — 2(k)B(K),  Ei(k) =~ 2,(K),

substituting these quantities in (3.2b) gives the compact algorithm
-1 N

N
I— PLR Bk +1) = {2 fr(k)ii(k)} 2 2.(k)y, (3.4
t=1 t=1

Heuristically, this estimator might also be obtained by applying OLS itera-
tively to (2.3) (Splidd, 1983). The crucial step, however, is taken by
approximation of the gradient. It is the goodness of this approximation,
expressible in terms of G(B), that determines the properties of convergence
(see Hannan and McDougall (1988) and the next section). Notice, moreover,
that the algebraic derivation of (3.4) from (3.2) is not possible for non-linear
estimators with Newton-Raphson or Marquardt steps.

The compact structure of the I-PLR algorithm makes it easy to derive its
corresponding sequential version by adapting recursive least-squares (RLS)
techniques (Plackett, 1950; Ljung and Soderstrom, 1983). For this purpose we
equate the number of iterations and the number of processed data
(k=N)=1t in (3.4) and introduce a sequence {A'} which discounts old
observations (suitable for tracking parameter changes):

H

B = {Ztl'z}(t = DATT 2t - 1)}_1 2 20t - DAy, (3.50)

=1
= R(t)7's(¢) say. (3.5b)
Typically 0 =< A =<1, and defining 2,(t — 1) = Z, we easily obtain
R(t) = AR(t — 1) + 2,2}, AR(t — 1) = R(t) — 2,3}

s() = As(t = 1) + £, s(t — 1) = R(t — DBz - 1).
Hence, substituting the last three expressions sequentially in (3.5b) we obtain
R = PLR B(t) =BG - 1) + R()2{y, - B - 1))} (3.62)

W) =t =1)+{y - Buyz), P()= (3.6b)

VOR()
t
where P(t) is an approximate estimator of the dispersion matrix of B(¢).
The two terms in braces in (3.6a) and (3.6b) are respectively the predicted
error 4, and the estimated error @,. In the iterative version (3.4) we have, as
an intermediate quantity, the residual of regression @, (k)=
- ﬁ(k)’?.‘,(k —1). Used in place of &,(k) this computationally simplifies
the algorithm but introduces a substantial inefficiency that slows down the
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convergence. The actual cost of the recussive transformation (3.6) is now
represented by the fact that, unlike (3.4), the pseudolinear regressors can no
longer be computed ‘exactly’. However, a simple solution can be obtained
with a proper dynamic adaptation of the iterative calculations; for {m,} this
means

1 (k) = gﬁi(k)m,-,-(io + gofbf(k)x,-b-,
R () = Zrlsi(z)m(z —i)+ 20@,1(:)):,_1,_,.
i= j=

Thus, using quantities like the last one, the updated vector of regressors
becomes : '
@ =m0 ... mE—r+ 1, x4 ... %5 A)... At = p + 1),
a(t) ... 8% — q + 1)]
which dépends on all past values of B(1) (indeed, we have set k = N = ¢).

At this point the sequential NLS estimator can be simply recovered by
re-establishing the filtering with the ‘transfer function’ G(B) in (3.6):

t (k) = G (B)2 (k)
R §.1(t) = G(B)2,4i(0)

Notice, however, from (3.3) that derivatives with respect to the same kind of
parameters (say «) satisfy the dynamic relationship
da/(p) da,(B)

x T e —— T e ——— k = E& =

H—k,(m aai+k aai B Ez,-k(ﬁ)s 21 6’ w, 0’ ¢
so that the computation of the gradient can be compactly developed by means
of recurrence formulae. For {—34,/3¢,} we have, as in Hannan and Rissanen
(1982),

; (k) = A,k) = 3 Bk —i(k)
i=1
R A1) = A - i 6.0t = i).
' i=1

We remark, however, that the introduction of this filtering is insignificant,
from a computational point of view, only for ARMAX models. Indeed, for
the TF models the calculation of the first two derivatives, such as {~3a,/34;},
requires the three steps

2,
R mi(t) = mt) - §1¢f(t)m(t )

(t) = At) — 3 B(e)i(e — i)

i=1
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m(e) = m(f) + 2 3:(OHym(t — i)
i=1 :

and these increase the length of the FORTRAN routine by more than 50%.
Finally, utilizing quantities like the above, we obtain the updated gradient

B =[m@)...mE—-r+1),20)... 80~ 5s), i) ...
At —p+ 1), d()... d(t—q+1)]
and substituting this in place of z,(-) in (3.6), by recalling (3.2), we obtain
R—~s  B(t+1) = B(e) + S¢t + D7 E iy — BOY 2} (B72)

-1

S+ 1) =250 + BBl QU+ 1) = LEEDIELD (5 7
where Q(r + 1) is a consistent estimator of the dispersion matrix of B +1).

In summary, the global strategy of derivation developed so far can be
sketched as follows: I-NLS(3.2) - I-PLR(3.4) - rLs — R-PLR(3.6) — R-
NLS(3.7). Following this scheme we have avoided most of the methodological
problems which arise in the direct derivation of (3.7) from (3.2); furthermore,
we have developed the background of the PLR techniques which are treated
by many authors in a completely heuristic fashion. To explain the first point,
we remark that in the prediction error method (PEM) the derivation of the
recursive algorithm from the corresponding iterative version usually imposes

3J(P)

8B | p=ns-)
i.e. Ji_;(t—=1)=0 (Goodwin and Sin, 1984; Ljung, 1985). However, this
assumption does not hold on many grounds. For example, in the case of
time-varying parameters (which is the major field of application of the

recursive methods) J,_;(f) may at most be minimized by the sequence
{B(1) ... B(¢t — 1)} and not by its final value only.

e-1= =T t-)+ &t -Dau-1)=Ea,

4. CONSISTENCY AND EFFICIENCY

The asymptotic analysis of iterative and recursive estimators of dynamic
models has mostly been concerned with the properties of consistency and
efficiency; properties of I-NLS have been well investigated f(e.g. Poskitt,
1989). We now briefly extend to TF systems the principal conclusions reached
for ARMAX models in the ‘recursive literature’ under general assumptions of
stationarity, stability and A=1 (e.g. Ljung and Soderstrom, 1983; Goodwin
and Sin, 1984).

R-NLs. Since this estimator is a simple algebraic transformation of its
corresponding I-NLS, it not only has the same general asymptotic properties
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(normality and consistency) but also shares an identical limiting dispersion
matrix:

PR(B(r) — Bo} = N[O, GRE{EBIEB)) ). (4.1)

R-PLR. Since this algorithm approximates the above in the gradient, it
maintains the properties of convergence only if the matrix G(z) behaves like
a passive filter. This feature is expressible in terms of the positive real
conditions:

necessary Re{G(2)} >0 |z| =1 (4.2a)
sufficient  Re{G(z) - 12} >0 |z|=1 (4.2b)

(see Appendix A2 for details). Moreover, unlike (4.1), we generally have
lim B[£2{B(t) = A})* # oFE{z(Bo)zi(By)} ™! 43)

Recently, these conclusions have been extended to the iterative case by Stoica
et al. (1985), as regards the conditions of convergence, and by Hannan and
McDougall (1988) for the general asymptotic properties.

The formal proofs of the results (4.1)-(4.3) for ARMAX models have
required complex and refined mathematical apparatus which is difficult to
follow and apply to the various cases. In particular, it is not easy to check
whether both (4.2a) and (4.2b) are needed in I-PLR, why they are not
required in NLS, or when (4.3) may hold with an equals sign. In the sequel
we reconsider the approach of analysis by recognizing that the algorithms
available today have a strong background in the methods of stochastic
approximation developed in the period 1950-70.

A typical problem of stochastic approximation consists in finding the value
B, that minimizes a mean value J(f). For every B a random variable x(f) is
observed, such that E{x(f)|B} = J(B), or its gradient y(f), such that
E[y(P)|p] = 3J(B)/3B = V(P). The derivation of the basic scheme of calcula-
tion parallels the steepest descent method:

3J
B = By + aty(m), 3 =B 0y e
B | p=pew
where a(n) is the so-called gain sequence. Many authors have dealt with the
analysis of the above; one of the more convincing results is that of Gladyshev
(1965). ‘

THEOREM. If the stochastic approximation scheme (4.4) fulfils the conditions

- -

@) a(n) >0, Dan)=0o, > an)?<ow (4.5a)
n=0 n=0
(&) o ﬁ%flkr* E{(B-B)y(B}>0 Ve>0 (4.5b)
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(#i) E{ly@®F} =n1 + |- Bl) n>0 (4.5¢)

then B(n) converges almost surely and globally to the unique value B, which
makes V(By) = 0: lim p{||B(n) — Bo| = 0} =1, n— », VB(0) initial.

Instead of reviewing the proof of the theorem (an excellent survey is given
by Kashyap et al. (1970, p.350)), we now briefly discuss the meaning of
assumptions (4.5). Condition (4.5a) requires that the rate of decrease in {a}
is such that the variance of the estimate of J(f) is reduced to zero; in
particular, the second requirement provides unlimited correction effort and
the third guarantees mutual cancellation of individual errors for a large
number of steps. The harmonic sequence w(n)=1/n satisfies all three
requirements. Condition (4.5b), i.e. inf(f — By)'V(B) >0, means that V(f)
behaves like a linear function of B in a neighbourhood of f. It also implicitly
recalls the principle of dynamic programming which states that the direction
A(k) = B(k) — B(k — 1) of an iterative algorithm is admissible only if it forms
an acute angle with the gradient of the objective function evaluated at that
point (Tsypkin, 1971, p. 28):

k) < Tk = 1) « Ay 9 (k) > 0 (4.6)

Furthermore, for a(n) = a, constant, (f — f)'V(B) is equivalent to a Lyapu-
nov function (Tsypkin, 1971, p. 34) and this ensures the global character of
the convergence. Finally, condition (4.5c) guarantees that the variance of y(f)
is finite and that ||y(B)|* is bounded above by a quadratic function of
A = - B, for all B. It is worth noting that the independence of the sample
realizations {y(n)} is not required here.

Now, in order to utilize the theorem for the analysis of the algorithms of
Section 3, we must first put them in the form of stochastic approximation
schemes and then we must check if and how the conditions (4.5) hold. This
task can be accomplished by equating (k = N) = ¢, introducing o(¢) and then
evaluating the ‘angle’

,inf E{A()'V(1)|B} >0 4.7)

for suitable objective functions. The importance of the measure (4.7), which
actually combines conditions (4.4), (4.5b) and (4.6), is twofold. It can work
directly on estimators in both recursive and iterative form; moreover, it treats
jointly the problems of the convergence in numerical sense (k) and in
statistical sense (N). In contrast, many statistical analyses of non-linear
estimators are unsatisfactory since they usually assume the existence of a
consistent initial estimator and only investigate what happens in the first
iteration. In what follows we analyse three cases.

-PLR. Consider (3.4) in step-variable form and equate (k = N) = ¢:
t t

B)=B¢-1+ am[z 2.t — D2 - 1)}'1 2 2.t - Dar - 1)

7=1 =1
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with a(r) satisfying (4.5a). Now referring to J,=2X/ ,a%2t, we have
/1, with E, = G(B)z., so that (4.7) becomes S

. t ’ t -1 1 t

inf E[a(t)(z z,a,) (2 z,z’,) {; > G(B)z,a,}| >0
=1 =1 =1

Clearly this holds only if the passivity condition (4.2a) is satisfied. To prove

this in detail, define the random variable w,= Vw,w, where w,=

[Ziz.2)] ¥?Z!z,a, and let a(t) = 1/t; thus the previous expression becomes

Int E[a()wiG(B)] = | a(0)?hu(ec"*)G(e™) do

= Ir'1f f:w(t)zitww(e““’)Re[G(e""”)]dco =0

R-PLR. Let A = 1, a(¢) = 1/¢ and substitute R(¢) with R(t) = R(t)/t in (3.6):
Bt = Bt - 1) + «(R()'2,(t — Da(e - 1)

where d,(t - 1) =y, - B(t - 1)'2,(t — 1). Hence considering J, = a2/2, (4.7)
becomes

inf E[{a(1)zia,R(1)"'}{G(B)z,a,}] > 0
which again holds only if G(BY) is positive in the sense (4.2a).

REMARK. As regards the restrictive condition (4.2b), it is apparent, by
combining the arguments of Ljung and Soderstrom (1983, p.457) and
Goodwin and Sin (1984, p.345), that it fundamentally serves to assure the
positive definiteness of R(¢) for all ¢. Notice, in fact, that R(t), computed
recursively, depends on all the values {B(1)... B(r — 1)}, and thus it might
be negative definite. Furthermore, we observe that in the analysis of the
stochastic gradient version of the R-PLR—in which R(¢) is replaced by its
trace 2{[|2,(7 — 1)|* which is always positive—the necessary condition (4.2a)
is sufficient for the convergence (Ljung and Soderstrém, 1983, p. 214),

From this remark it is clear that (4.2b) does not serve in the step-variable
form of the I-PLR, since in this case R(k) depends on 3(1{) only. Rather, it
is required in the lagged residual version of the I-PLR, which substitutes
a,(k) with @, (k) =y, — k)2 {k — 1), because R(k) would become a func-
tion of {B(1)... B(k)}. These conclusions agree with those of Stoica et al.
(1985) and Hannan and McDougall (1988). :

As a final check on the reliability of the measure (4.7), we can assess why
passivity conditions (4.2) are not necessary for NLS estimators.

r-NLS. Consider, for example, the stochastic gradient version of (3.7) with
A=1:
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1 N
By = Bt~ D + g B - DaGe - 1),

Now if we utilize the functional J, = a7/2 (proper for sequential optimiza-
tions), (4.7) becomes

1
tr $(z)
and this holds for any G(B) stable, positive real or not. The same conclusions

can be drawn for (3.7) and for I-NLS, so that optimal methods always
converge.

inf E

{G(B_l)ztat} 'G(B)z.a,| >0

Proceeding in this way, we might still apply (4.7) to other algorithms;
however, we now wish to investigate the problem of efficiency. Here, unlike
the convergence, there is no- general framework of analysis and every case
must be treated with ad hoc techniques. We heuristically deal with two cases.

R-NLS. A very simple way to show (4.1) is that of ‘solving’ the recursions
for B(t) and then applying standard off-line calculations. Let A= 1, B(0) =0
and subtract B, from (3.7a):

S(O{B(1) — B} = S(O{B(t — 1) — Bo} + Bt — Da,(t — 1)
=8¢t - D{B(r—1) - B} + E & (B - 1) - B} + E.a,.

Now, summing both sides from 7= 0 to 7 = ¢, we obtain
t

S({B(r) - o} = §=:1 E(r - DIE(r - Y{B(r - 1) - By} + d(x - 1)]
but the expression in square brackets is just the Taylor expansion of a,(8,) in
Bz - 1); hence

Bo) ~ by~ 157§ 3 Eulr — Ve,

Finally, since B(t)— B, a:s., the Slutsky theorem implies &,(f — 1) — & a.s.,
and (4.1) can be shown as in the iterative case.

I-PLR. Given the non-linearity (in the parameters) of the TF model and the
approximation §; =~ z,, the implicit objective function of the PLR method
becomes Hy(f) =2\ z.a,/N, concerning the correlation residuals-regressors.
Following the approach of Spliid (1983), this may be very useful in proving
(4.3). Indeed, assume that (3.4) converges and expand the empirical A (o),
t = (k= N), in By '

. L {93z,
A - o~} B[ 0, 4 ) B0 - 8) B EGHBO - B

The result follows by assuming ¢ large and ergodicity. In this situation, in
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fact, E(9z./0p a,) =0 because z, contains lagged regressors and differenti-
ation introduces a multiplication with a backward filter. Now, since

lim E[¢2{A(t) = Ho}]* = E(z:2})0"
the asymptotic dispersion becomes

lim E[£'2{B(r) - Bo))* = E(z.§) ™ E(ziz)0* E(§2))™"

and the loss of efficiency in passing from (3.2) to (3.4) is thus well
established. Note, however, that the conditions of convergence (4.2), under
which the above analysis has been carried out, roughly means G(B) = I;
therefore in the recursive context an approximate estimator for the dispersion
may be P(t), at least whenever |P(t)| > |Q(¢)|.

Let us finally summarize the conclusions of this section. Despite the
analysis of Spliid (1983), pseudolinear regression methods do not always
converge; however, by utilizing algorithms in stochastic approximation form
the severe conditions of convergence (4.2b) can be avoided. The previous
theorem and the related measure (4.7) are concerned with global conver-
gence, but for a certain initial value B(0) the limit B, may be a relative
minimum. In practical terms, however, if f(0) is yielded by the initiation of
Section 2, we can reasonably think that B(¢), ¢ = (k = N), converges toward
the absolute minimum B,*. Indeed, the estimates §(0), @(0) of Step 2 are
completely linear, and under regularity conditions ¢(0), #(0) of Step 4 are
strongly consistent (Hannan and Rissanen, 1982). Lastly, the approach of
Spliid (1983) is suitable for evaluating the efficiency of non-linear estimators
without gradient.

5. AN INDUSTRIAL APPLICATION

In this section we apply and compare the algorithms described in Section 3 to
the ‘gas furnace’ data of Box and Jenkins (1970). The example is concerned
with a real industrial process described by the TF system

wy + 0B + wyB?
¢ = v\ T A . X, 5+ 1 a
1- 6B 1- ¢, B — ¢,B?
The I-PLR algorithm (3.4) can easily be implemented on standard statistical

software with OLS. Without Step 1 the initiation procedure of Section 2 is
sketched as follows:

1

Estimate y, =&'y,_;+&'x,_,+n* Generate M, =8'M,_,+¥'x,_,
Estimate A¥= a'fl, + a? Generatefi, =y, — M,
Estimate #Al=¢'f¥ +0'a* ;+4, Generate a,=ﬁ,—$’ﬁ,_1—5'iz‘,_1

Estimate y,= §'2, + 4, Generate z,=[m, x,, A, G,
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TABLE1]
ItErRATIVE OFF-LINE ESTIMATES AND t Ratios
Method wy w4 W, 8 ') ¢ RSS
I-NLS -0.531 -~0.378 -0.518 +0.550 1.533 —0.634 16.6
(-7.1) (-3.6) (-4.8) 154) (32.1) (-12.5)
I-PLR -0.509 -0.462 -0.364 +0.583 1.531 -0.633 16.8
(—6.8) (-3.2) (-3.1) 3100 (324 (-12.7)

RSS, residual sum of squares.

In the generation steps, initial values of pseudolinear regressors can be
obtained via back-forecasting or simply set equal to zero. As mentioned in
the previous section, the mild condition of convergence (4.2a) requires I-PLR
in step-variable form; therefore, after every iteration, the estimate 3(k) must
be replaced by the convex combination r%(k) = o, Bk - 1)+ (1 - a)Bk)
O=a,=1).

Table 1 summarizes the iterative estimates obtained with the Pack package
and a TSP program. We can see that if the former coincides with that of Box
and Jenkins, the latter is not statistically different if we use some asymptotic-
ally normal tests, although a greater number of iterations is required to
converge (a; was 1/2). o ‘

Unlike recursive methods based on the Kalman filter framework (Bayesian
approach, see Appendix Al), the implementation of the recursive algorithms
of Section 3 is much simpler and the initial values to be specified are less
awkward. B(0) can be set equal to zero, R(0) and S(0) must be strictly
positive definite, e.g. diagonal 1/p, and A usually belongs to [0.9-1.0]. -

The specification of the pair (p, ) depends on the aims of estimation and
the nature of the system. As a general remark, we note from (3.6b) that these
coefficients play a similar role on P(r) (both prevent it from vanishing).
Moreover, the action of A in discounting old observations enables (3.6a) to
track changes of system parameters. These features establish the well-known
trade-off between noise sensitivity and tracking capability typical of the
Kalman filter framework; in terms of (3.6), this means in practice that
(0, )= RO - A@) = B@t) - Bt - 1). Hence we have the following.

(i) "Assuming a stationary system, if we want to estimate B consistently,
initializing 3(0) = for example, we must have 4 =1 so that P(¢) - 0. The
value of p must be large enough to ‘forget’ B(0) rapidly, but without
hindering the vanishing of P(). , :

(i) Assuming an evolving system, if we desire to track the changes A(t),
the action of the pair must be properly integrated, because if p is the initial
variance (or energy), A is the factor that spreads it into the sample. Intuitively
the coefficients must be designed so as to have mild sampling error conditions
uniformly in the record of data. Empirical experience has suggested
[0.01 = p=<0.30], [0.95 = A= 0.99].
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TABLEII
FinaL ON-LINE EsTIMATES anD (¢ = 296)

P 1) oy W 0 ¢ ¢ RSS
0.01 —0.426 -0.392 -0.301 0.591 0.521 -0.167 159
0.05 —0.502 —0.433 -0.237 0.622 0.852 —0.068 61.7
0.1 -0.534 -0.475 -0.223 0.611 1.043 -0.199 43.4
03 -0.563 —0.581 -0.148 0.597 1.303 -0.423 21.3
0.6 -0.557 —0.682 =0.045 0.601 1.411 -0.526 22.5

1 —~0.543 -0.766 +0.046 0.608 1.465 -0.573 20.5

2 -0.520 —0.871 +0.150 0.616 1.512 —~0.624 18.8

In the following tables and figures we shall check these considerations
empirically. Table II gives final values of P(¢) in PLR recursions with
[ﬁ(()) =@, A= 1] and different values of p; the aim is to check the perform-
ance of on-line algorithms as off-line estimators. The results show the absence
of convergence, in particular towards the corresponding values of Table I,
which must be intended as average values of the sample. The behaviour is
probably due to a latent non-stationarity (see the effect of p) but not to the
non-passivity of the system; otherwise, I-PLR estimates should also diverge.

Table III provides final values of the residual sum of squares (RSS),
corresponding to different pairs (p, A) and B(0) = 0. It substantially confirms
(i) the similarity of the role of (p, A) in adapting the model to the data (i.e.
on tracking capability), (ii) the range in which the pair must take on values to
have mild variability of the estimates and (iii) practically unlimited improve-
ment of the statistical performance outside this range.

Figures 1 and 2 show the recursive estimates obtained with B =B of
Table I and the values [p=0.15, 4 =0.97] which best seem to satisfy the
requirement of mild-uniform variability. They show the strongly non-station-
ary nature of the system; in particular, at ¢ =260 the parameters of w(B)
change sharply, followed by the others. This jump is difficult to understand;
however, its persistence excludes accidental factors (e.g. measurement
errors).

In comparing Figures 1 and 2 we note the greater smoothness of the NLS

TABLE III
FINAL ON-LINE ESTIMATES OF THE RESIDUAL SUM OF SQUARES

P A=098 A=096 A=094 A=092 A=09 A=08 A=070
0.01 75.2 50.6 37.9 29.4 23.3 9.1 4.1
005 28.4 20.6 16.0 12.7 10.4 4.4 2.1
0.1 20.3 14.9 117 9.5 7.8 3.4 15
0.3 15.8 117 9.2 7.5 6.2 2.7 1.2
0.6 12.5 9.2 7.3 5.9 4.9 2.1 0.9
1 11.7 8.6 6.8 5.5 4.6 2.0 0.8
2 10.9 7.9 6.3 5.1 42 1.8 0.7
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Ficurel. Time path of R-PLR estimates.
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Fioure2. Time path of R-NLS estimates.



122 €. GRILLENZONI
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] 2'90 ] 6'?0 1

. -2.00
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0.00 = 40.00  80.00 = 120,00 160,00 200,00 240,00 280,00
TIME: 1-OBS/6-SEC

000 | 40,00 ' 80,00 W 120.00 160.00 200.00 240.00 280,00
TIME: 1-OBS/9-SEC

Ficure3, Original and differenced series.
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estimates (a consequence of the filtering with G(B) in the gradient), in
particular for w(B); the coincidence of the other coefficients confirms that
already found in Table I. It is worth pointing out that the parameter functions
reported in the figures yield RSS values of 7.4 and 8.5, i.e. less than half the
static case.

An insight into the reasons underlying the change of parameters can be
found in Figure 3b which plots the differenced series (1 — B)Y,, (1 = B)X,. It
can be seen that before ¢ = 260 the increments of Y systematically lead those
of X (by about two to four lags) while this causal order inverts at ¢ = 260,
probably as a consequence of some control action.

Lastly, in Figure 4 we evaluate [A =1, p= 0.25, B(0) = 0] the performance
of the two recursive algorithms as off-line estimators. Although R-NLS
converges more rapidly, the behaviours of the two are very similar and a
common feature is the divergence of the polynomial ¢(B), probably towards
the instability region.

Again, an explanation can be gained from the plot of the input-output
processes (Y, — Y), (X, — X) in Figure 3a. The relative smoothness of these
graphs (like polynomials of high order) and the strong correlation of the
original series suggest that a differencing (1 — B)? might be in order. Typical
ways for identifying the optimal value of 4 are based on the reduction of
variance and correlation in the differenced series. Now for both processes it
has been assessed that a minimum sample variance is attained at d =2 and a
minimum serial correlation at d =3. Hence the specification of the Box-
Jenkins model should be reconsidered.

A general conclusion of this paper is that PLR and NLS estimates are
similar and thus estimation methods without gradient are valid even in the
presence of near instability and non-stationarity. Moreover, their ¢omputa-
tional simplicity, their tracking sensitivity (on-line) and their general solution
of the initial value problem (off-line) make PLR algorithms preferable in
preliminary estimates.

APPENDICES

Al. Problems with the Kalman filter

Despite its name, this approach was not proposed by R. E. Kalman, nor has he insisted on it.
The method adapts to parameter estimation the algorithm developed to Kalman (1963) for the
estimation of the state in a physical system subject to measurement errors. Consider the state
space model

X =Fx, +Ga,, a, ~ IN(o, Q)
y,=Hx, + e, ¢, ~ IN(o, Z,)

where {x, y.a, e} are the state, the output, the input and the measurement error, and
{F,G, H;Q, X} are the system parameters; a problem of filtering typically consists in
estimating x, (non-observable) on the basis of y, (observable) and of the parameters (assumed to
be known from physical laws). The sequential solution derived by Kalman (1963) was based on
the joint use of two predictors of the observed output:
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J/‘?\:|:—1 = E[xrb’n-n Viezs « -] = F:-1£:—1|z-1
5;!|t— = E[yyi-1s Y20 . . ] = Htftli 1.

Next, Mayne (1963) and Harrison and Stevens (1976) proposed an adaptation of the Kalman
algorithm to the parameter estimation of a system with unknown stochastic coefficients ¢:

¢ =¢.1+a, a, ~IN(o, Q)
=29 +e, e ~IN(o, 0?).

Treating ¢ as an unobservable state x and the regressors z as the observation matrix H,
straightforward application of the Kalman equations gives

$t =(I- krz:)ar—l + ky,
k= Py + Qz,{z:(P,y + D)z, + 0}!
P, = (I - kz)(P,., + Q).

Apart from the complexity of the solution, the forcing of the interpretation (parameters and state
have a very different nature) and the practical problems of implementation (R, o are not readily
available), the derivation of the above, following the same steps as Kalman, is possible only in
models with fixed regressors. In the case of stochastic z,, the.derivation fails at the step of
computing the predictor

Vi1 = E(z:¢t|)’r-1’ Viezy 0 ) F z;¢llt—1'
This occurs whenever z, has unknown mean, z,, ¢, are correlated or a feedback y, — z, exists.

" A2, Passivity conditions for PLR, ,
Considering the ending polynomials of G(B), we can summarize the requirements (4.2) as
1 c
Re 2D 2 >0 |z|l=1, (@=c=s1l)
where, for ¢ = 0.1, we have the necessary and sufficient conditions of convergence. The latter can
also be expressed as
1 1 2 - 6(2)| :

— -] = >0« |0(z) -1 <1 V|z|=1.

6 "2 ™ ey O le@ -1 i
Hence if 6(z) has first degree, the above holds on the whole invertibility region [-1, +1].
Instead, for second-order polynomials the condition becomes more severe (see Figure 5). (half
the invertibility region) such that in many situations (4.2b) may be violated. Thus the proposal to

Ficure5. Regions (4.2a), (4.2b) for a second order polynomial.
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use the PLR algorithms in stochastic approximation form: (in which necessary and sufficient
conditions coincide) has great practical value.

A3. Proof of formula at Step 1
From the assumptions: of Section 2 we have Yy (k) = E{y,x,._,] 0,k<b,b=0; now since
- W(B)x,.5, V(B) = £§ v,B! it follows that

Ynn(k) = E(nty-) = E{(Jr = Woki-p = Vifiop1 = Vi¥iops = ++ = Vikppog = - )
(Oemte ™ VoXembok = ViXimpoket = « o+ = Vipopork = - - )}
Hence ' ‘
Ym(k) = Yy (k) = Y5 (B) = Ve ¥n(b +1) — ... (A0)
—VYp(b+ &) = viyy(b+ k+ 1) = vy (b +Kk+2)— ... (A1)
+ VVYer(k) + vV Yu(k — D)+ vyvayulk = 2) + ... (A2)
+ v WYulk + 1) + vivyu(k) + vy (k =1+ ... (A3)

+ vV Yk +2) + ...
But y, = v(B)x,_, + y(B)a, so that
YoYy(b + k) = NE[{voxi-p + ViXiopoy + ViXpmpoa + .o+ Y(B)A}X,mp-i]
= %{V¥u(k) + iyu(k — 1) + vyu(k - 2) + ...}
Yy(b + k+ 1) = vi{vyu(k + 1) + viya(k) + ...}

Hence, the first term of (A1) cancels with row (A2); the second term of (A1) cancels with row
(A3), and 50 on. Only row (AQ) does not vanish, being indeed thc required formula.
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