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Forecasting unstable and nonstationary time series
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Abstract

Many time series are asymptotically unstable and intrinsically nonstationary, i.e. satisfy difference equations with roots
greater than one (in modulus) and with time-varying parameters. Models developed by Box–Jenkins solve these problems by
imposing on data two transformations: differencing (unit-roots) and exponential (Box–Cox). Owing to the Jensen inequality,
these techniques are not optimal for forecasting and sometimes may be arbitrary. This paper develops a method for modeling
time series with unstable roots and changing parameters. In particular, the effectiveness of recursive estimators in tracking
time-varying unstable parameters is shown with applications to data-sets of Box–Jenkins. The method is useful for
forecasting time series with trends and cycles whose pattern changes over time.  1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction of their LS predictors (see Fuller and Hasza, 1980,
1981).

Parzen (1982) introduced the idea of modeling The approach of directly modeling original data
nonstationary time series by estimating the models may be further extended to include the case of
on the series in levels, i.e. by avoiding differencing avoiding power transformations and allow ‘‘explo-
as in Box and Jenkins (1976). This approach is sive roots’’ to change over time. The rationale is that
suitable for modeling macroeconomic series with roots wandering on the unit circle may generate
trends because the assumption of unit roots may stochastic trends with non-homogeneous compo-
sometimes hold only for financial processes. More- nents, such as structural breaks and inverting slopes.
over the probability of having processes with roots For multiple time series an original approach to
exactly on the unit circle is zero. forecasting unstable processes may be obtained from

Although Parzen (1982) did not provide theoret- cointegration analysis (see Engle et al., 1989).
ical motivations, his approach can be supported by By following the approach of optimized recursive
several results in mathematical statistics, in par- estimation (see Grillenzoni, 1994), this paper pro-
ticular, those concerned with the properties of least vides a framework for modeling time-varying un-
squares (LS) estimators of the parameters of explo- stable roots. This will be done in Section 3, after an
sive autoregressive models (see Rubin, 1950; White, integration to the work of Parzen (1982).
1958, 1959; Anderson, 1959; Rao, 1961) and those

2. Unstable time series

*Corresponding author. E-mail: carlog@iuav.unive.it By definition, long-memory or unstable time series
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hZ j are realizations of stochastic processes which fail tial; (ii) models with two or more unstable rootst

to satisfy standard requirements of asymptotic in- generate series which are unsuitable for representing
dependence and boundedness in probability. The real data because they are smooth like deterministic
problem of modeling such processes may be tackled functions. As a consequence, the number of unstable
as in Parzen (1982): Given a short-memory series roots in the model (2a) may be restricted as d51,
hz j a dynamic model is a mathematical device f( ? ) independently of the width of the periodicity s.t

that transforms it into white noise ha j; by extending Combining equations (2a,b) we obtain the multip-t
sthis definition to the relationships between long- licative model f (B)F (B )Z 5a with a |IID(0,p d t t t

2memory and short-memory time series one may s ,`). Apart from the usefulness in terms of
obtain the sequence interpretation, the advantage of multiplicative filters

over the additive ones is essentially a question of
Stabilizing Whitening

parsimony. This is apparent in the presence ofZ → → z → → ah j h j h jF G F Gt t tFilter F( ? ) Filter f( ? ) periodicities because the two parameter model (12
s

fB)?(12FB )Z 5a generates an AR(3) process.Using linear representations and allowing for the t t

Problems arise in the procedures of identification andexistence of periodicities of size s.1 in the dy-
estimation, because nonlinear algorithms are re-namics of the processes, we may define the system
quired.

Z 2 F Z 2 ? ? ? 2 F Z 5 z ,t 1 t2s d t2ds t Sequential procedures may be used in the forecast-
s ing phase without loss of optimality. Indeed, theF (B )Z 5 z (1a)d t t

LS-predictor at origin t for the lead time h must
satisfy the equationz 2 f z 2 ? ? ? 2 f z 5 a ,t 1 t21 p t2p t

sf (B)z 5 a (1b) ˆ ˆp t t f (B)F (B )Z (h) 5 0, Z (h) 5 E[Z uZ , Z , . . . ]p d t t t1h t t21
swhere (B) is the lag operator: B Z 5Z . Thus, thet t2s hence, the sequential solution becomes

previous definition of memory-length may be
ph21

checked as stability properties of linear difference ˆ ˆz (h) 5O f z (h 2 j) 1O f z (3a)t j t j t2jequations, i.e. size of the roots P , r of the filters j51 j5hi j
21 21

F(B ), f(B ):
h21 d

ˆ ˆd ˆZ (h) 5O F Z (h 2 is) 1O F Z 1 z (h) (3b)t i t i t2is ts s i51 i5hF(B ) 5P (1 2 P B ), uP u $ 1, i 5 1,2 . . . d (2a)i i
i51

The idea of merging forecasts obtained from short-
p

and long-term models has also been developed in the
f(B) 5P (1 2 r B), ur u , 1, j 5 1,2 . . . p (2b)j i framework of cointegration by Engle et al. (1989).j51

Statistical properties of the above predictor haveSome ambiguities remain in the case of unit-root
been investigated by Fuller and Hasza (1980),processes, because they have first moments but not
(1981). In particular, if (d5p5s)51 the meansecond moments in the limit. Other special features
squared error (MSE) isarise in statistical inference where LS estimators do

2not have standard distributions (see White, 1959). In ˆ ˆS (h) 5 E [Z 2 Z (h)]h jt t tany event, the probability to meet with a process
2 2(h21) 2ˆ5 s (h)[h F (F 2 1)having roots exactly on the unit circle is zero. Hence, t

2h 2models of practical interest may simply be classified 1 (F 2 1) /(F 2 1)]
as stable or unstable.

2 2 2h 2From simulation experiments in Grillenzoni ˆ ˆs (h) 5 E [z 2 z (h)] 5 s (1 2 f ) /(1 2 f ).h jt t t a(1993), other important remarks are as follows: (i)
trends generated by random walks plus drift and This shows that forecasting unstable processes by
explosive models are qualitatively different: the first means of explosive roots may have significant
ones are linear, whereas the subsequent are exponen- consequences in terms of forecast variability. On the
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other hand, improper differencings make predictors
12statistically biased. (1 2 B)(1 2 B )log(Z ) 5 (1 20.377B)t

(23.4)
For any data-transformation Y 5g(Z , Z . . . ),t t t21

144
the optimal (minimum MSE) predictor of the original 12 2ˆ ˆ(1 20.587B )a , Q 5 O a 5 0.182 (4)t N tseries does not coincide with the inverse transforma- (42.3) t514

tion of the predictor of the transformed series, i.e.
21 where the statistics in parentheses are t-statistics andˆ ˆZ (h)±g [Y (h)], h.0. In fact, by extending thet t

Q is the sum of squared residuals (in-sampleNJensen inequality to the conditional expectation (see
prediction errors). In (4) the log-transformation notWhite, 1984 p. 54) one has
only serves to stabilize the variance of hZ j and tot

Ŷ (h) 5 E[g(Z )uZ , Z , . . . ] improve the efficiency of estimates, but it is essentialt t1h t t21

to the existence of MA components. In fact, theˆ± g[E(Z uZ , Z , . . . )] 5 g[Z (h)]t1h t t21 t model fitted on original series is
where the sign ., , of the inequality depends on

12(1 2 B)(1 2 B )Z 5 (1 20.310B)the convexity or concavity of g(?). In particular, for t
(56.3)

ˆ ˆthe log-transformation one has Y (h)#log[Z (h)], sot t
12˜ ˆ ˆ(1 20.113B )a , Q 5 17 752that the sub-optimal predictor Z (h)5exp[Y (h)]$ t Nt t (20.7)

Ẑ (h) tends to be biased upward. With reference tot

the airline application of Box and Jenkins (Box and Issues raised in the previous discussion concern:
Jenkins, 1976, p. 308), we now show that the (i) consistency of the unit-root assumption with data;
predictor (3) performs better than that which works (ii) feasibility and efficacy of unstable root model-
on the log-transformed series. ings; (iii) relationships between trend and seasonal

components; (iv) effect of data transformations on
forecasts. The first step toward answering these
questions is to estimate the model identified by2.1. Application 1
Box–Jenkins without the unit-root constraint:

The airline series, displayed in Fig. 1, concerns
12(1 20.948B)(1 21.021B ) log(Z ) 5 (1 20.361B)monthly observations of passenger totals in U.S. t

[27.7] [31.7] (20.3)
international air travels from 1949 to 1960; the

12sample size is N5144 and the periodicity is s512. (1 20.582B )a , Q 5 0.178 (5a)t N
(41.1)The model identified by Box–Jenkins was

12(1 20.915B)(1 21.118B )Z 5 (1 20.399B)t
[226.8] [166.1] (59.2)

12(1 20.489B )a , Q 5 13 982 (5b)t N
(71.8)

ˆwhere in brackets are reported the t-statistics (f 2N
ˆ1) /SE(f ), whose distributions have been tabulatedN

by Fuller (1996) for simpler cases. We may note that
the unit root assumption is rejected in all cases;
however, only in the model without log-transforma-
tion is the coefficient F far from unity and does it
substantially improve the fit over the previous esti-
mate. The introduction of a deterministic drift in the
model (5b) did not improve the statistic Q ; theN

reason is that unstable roots alone may generate local
trends.

Fig. 1. Plot of airline data-set: Z ———, log (Z ) - - -. Another estimation experiment concerns the se-t t
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quential treatment of multiplicative models. The unstable roots. As shown in Appendix A, standard
results confirm the crucial importance of unstable limit theorems do not hold and t-ratios may be
periodic roots biased indicators.

From previous estimations on log-transformed
12(1 21.114B )Z 5 z , Q 5 35 920 (6a)t t z data it is not possible to discriminate precisely

[531.2]
between models with unit or unstable roots; more-
over, the values of the statistic Q cannot be12 N(1 20.913B)z 5 (1 20.393B)(1 20.474B )a ,t t

[229.8] (64.2) (80.9) compared with those of the models estimated on
original data. Thus, the sole objective way to com-Q 5 14 003 (6b)N
pare the various models is that of making forecasts
of real data and computing prediction errors. GivenIn this case the introduction of a drift in the first
the origin t and the steps ahead 1,h,12, theequation has significant effects on the size of the root
predictor of multiplicative models as (5a), is givenF, but the global fitting performance Q slightlyN

byworsens.
At this point the following remarks can be made:

˜ ˜Z (h) 5 exp[f log(Z (h 2 1)) 1 F log(Z )(i) With or without log-transformation, the presence t t t1h212

of roots significantly greater (F ) and lower (f) than 2 fF log(Z ) 2 Qat1h213 t1h212
unity is detected in the airline data-set. Without

1uQa ]t1h213logarithms the relaxation of the unit-root hypothesis
improves the fitting by about 20%. (ii) Periodic One of the hypotheses to be checked is whether this
unstable models of the type Z 5FZ 1z witht t2s t predictor is better than that which assumes f 5F 5
uF u.1 are capable of simultaneously capturing ˆ1, but worse than Z (h) which works on original data.tseasonal and trend components. This is concretely In the literature on forecasting, absolute percent-
shown in Fig. 2 which compares the differenced age errors (APE) provide basic statistics for model
series (Z 2Z ) with (Z 21.114 Z ), where thet t212 t t212 comparison. In order to mitigate the dependence of
latter is nearly stationary. The conclusion is that individual errors from the particular forecast origin,
seasonal and trend components are neither indepen- it is necessary to average over t, obtaining the mean
dent nor separable. (iii) The high t-statistics in the (M) statistics
previous models are due to the peculiar asymptotic

n ˆproperties of the LS estimator in the presence of Z 2 Z (h)1 t1t 1h t1t
] ]]]]]MAPE (h) 5 O U U (7)n n Zt1t 1ht 51

where n is the sample size of the mean and t shifts
the forecast origin. In the airline application we have
taken t51958.12, n512 and h, t 51, 2, . . . 12; more
specifically, forecast origin was changed 12 times,
and each time 12 forecasts were computed.

A plot of MAPE statistics generated by models (4)
and (5) is given in Fig. 3; the best one is (5b) which
does not transform data, whereas the worst one is (4)
proposed by Box–Jenkins. Intermediate performance
is provided by model (5a), with unstable roots but
log-transformed data. The performance of (5b) could
be further improved by re-identifying the ARMA
model of the series hz j generated by (6a). However,t

the task of the above exercise was the evaluation of
the effects of data transformations for a given modelFig. 2. Plot of filtered series: (Z 21.114 Z ) ———,t t212

(Z 2Z ) - - -. structure. As we may see in Fig. 3, these effects aret t212
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Fig. 4. Plot of the weekly average of the IBM series.Fig. 3. Plot of statistics (7) for models (4) ———; (5a) – ?–;
(5b) - - -.

present in the long run because statistics (7) differ,
on average, by about 50%. In any event, the per-
formance of the various models is good because all
MAPE are less than 4%.

2.2. Application 2

The second application focuses on another data-set
of Box–Jenkins: the daily IBM stock prices from
May 17, 1961 to Nov 2, 1962. Many financial series
are difficult to forecast because they behave like
random walks. For the IBM data, this hypothesis is
confirmed by the estimate Z 50.9995 Z 1a andt t21 t

Fig. 5. Plot of MAPE statistics of models (8b) ——— andby the nonsignificant MA parameter of the IMA(1,1)
(8a) - - -.model identified by Box and Jenkins (Box and

Jenkins, 1976, p. 239). The same data-set has been
border of the stationarity region of an AR(2) process,republished by Tong (Tong, 1990, p. 512) together
and therefore imply nonstability. Unlike Applicationwith its calendar. This enables us to obtain the
1 the fitting performance of the unstable model isweekly average Z (in Fig. 4) which is not a randomt

slightly worse than that of (8b). However, computa-walk:
tion of MAPE statistics over the last 16 weeks with

Z 51.378 Z 20.380 Z 10.264 a 1 a , t561, n510, h51 . . . 6 has shown a better per-t t21 t22 t23 t
(12.8) (3.7) (2.1)

formance of model (8a). The results are displayed in
Q 5 10 005 (8a)N Fig. 5.

z 50.394 z 20.127 z 10.292 z 1 a ,t t21 t22 t23 t
(3.5) (1.3) (2.5)

3. Nonstationary time seriesQ 5 9905 (8b)N

This section deals with the problem of time-vary-where N577 and z 5(Z 2Z ) are first differences.t t t21

ing parameters. The question is important for un-In practice the parameters of model (8a) are on the
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ˆ ˆ ˆstable models because we cannot expect real time Z (h) 5 F Z (h 2 s) 1 z (h) (10b)t t1h t t

series to grow indefinitely. More specifically, un-
stable roots wandering on the unit circle (i.e. inside Obviously, a fundamental question is the estimation
and outside the stability region) can invert the slope of parameters b 5f , u , F where k51 . . . p1q1kt it jt t
of the trends and, therefore, may have a stabilizing 1. A natural tool is provided by recursive estimation
effect on the series. This behaviour may be easily methods for stochastic systems presented in Ljung
checked by simulations. ¨ ¨and Soderstrom (1983). Once these methods have

A time-varying parameter extension of the frame- ˆprovided the estimates b , the approach of adaptivektwork (1), with the constraint d51 motivated in forecasting uses them in (10) in place of b .kt1hSection 1 and with hz j having an ARMA representa-t ˆAlternatively, one may build ARMA models for bkttion, is given by ˆand obtain the forecasts b (h).kt
T

21¯Z 5 F Z 1 z , E(F ) 5 ( lim T O F ) $ 1t t t2s t t t
T →` t51 3.1. Estimation(9a)

q
p The derivation of recursive estimators for modelsz 5O f z 1O u a 1 a ,t i51 it t2i jt t2j t which have a multiplicative structure is difficultj51

2 because they involve constraints on the vector ofa | IID(0, s ) (9b)t t parameters b which cannot be managed on-line.
where hF , f , u , s j are deterministic sequences. It Moreover, the gradient ≠a (b ) /≠b has a nonlineart it jt t t
should be noted that deterministic is not synonymous expression even in the autoregressive case. For the
with smooth and in (9a) the time-average of the system (9) we must thus resort to approximate
evolving root F lies on or outside the stability solutions which treat the model in 1-stage or 2-staget

region. The above may be viewed either as a two- forms.
stage system or as a model having a multiplicative
structure: f (B)F (B)Z 5u (B)a .t t t t t 1-Stage. The first approach consists of merging Eq.Stability conditions for model (9b) require that

(9a,b) into an ‘‘additive’’ model of order p*$(s1p)MA parameters be uniformly bounded and the others
and then applying known algorithms. However, thefluctuate inside the parameter space S of a stationaryp ˆattempt to recover the estimates F , which havetAR( p) model. For example, if p52 then S is the2 interesting interpretation in terms of signal extrac-well known triangular region and we must have
tion, is subject to identification problems.f [S , i51, 2 for every t$0 with the exception, atit p

most, of finite sets of points. The presence of these
sets and of Eq. (9a) may create trends and cycles in 2-Stage. The second solution proceeds sequentially
Z with complex transitory components, such as by applying known algorithms first to Eq. (9a) andt

structural breaks and inverting slopes. It may also next to Eq. (9b). In the first stage the series hz j ist

capture situations in which stable roots become generated as recursive innovations together with
ˆunstable and changes in the periodicity s.0. Finally, recursive parameters F . The fundamental statisticalt

2the variance s in (9b) might be assumed as problem of these estimates is their inefficiency.t

constant because the ultimate purpose of a time-
varying modeling is to obtain stationary innovations. To simplify the presentation of recursive algorithms

If parameters are non-stochastic, the optimal fore- we focus on AR models; these can be written in
casting function for (9) is a generalization of formula 9 9regression form as Z 5b x 1 a where b 5t t t t t(3) 9[f . . . f ] and x 5[Z . . . Z ] is the vector of1 t pt t t21 t2p

ph21 regressors. Now, an algorithm that unifies the main
ˆ ˆz (h) 5O f z (h 2 i) 1O f z adaptive estimators has been obtained in Grillenzonit it1h t it1h t1h2i

i51 i5h (1994) and has the structure
q

ˆ1O u a (10a)jt1h t1h2j ˆˆ ˆ ˆ ˆj5h 9b 5 b 1 aG x [Z 2 x b ], b 5 b (11a)t t21 t t t t t21 0 0
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worth noting that in constant parameter models theˆ ˆ9G x x G1 t21 t t t21ˆ ˆ] ]]]]G 5 G 2 m 1 g I , statistic Q has the same meaning as the residualt t21 1 p NF Gl ˆ91 1 x G xt t21 t sum of squares (RSS); therefore, we have a basis for
making comparisons with the results of the previousĜ 5 g I (11b)0 0 p section. Since estimation (12) might involve prob-
lems of parametric identifiability, parsimoniousˆwhere G is the dispersion matrix of the estimator. Int parametrizations, such as m 5l, g 5g may be0 1the above scheme 0,(l, m),1 and 0,(a, g ),`1 recommended.

are adaptation coefficients and (b , g ) are initial0 0
ˆ9values. Notice that the series [Z 2x b ] providest t t21 3.2. IBM seriesˆ ˆthe prediction errors and when x 5 Z , b 5 F itt t21 t t

may be used for generating the unobservable process We start with the IBM application because models
hz j in the system (9).t (8a,b) have not a multiplicative structure. The sole

Filter (11) encompasses several algorithms. In adjustment that we need when applying the method
particular, when (m 51/l, g 50) we have the1 (11)–(12) to (8b) is to substitute series Z withtrecursive least squares (RLS) estimator with ex- z 5(Z 2Z ). In all cases, best performance wast t t21ponentially weighted observations; whereas for (l5 provided by the algorithm (11) with the constraints
1, m 51) we have the simplified Kalman filter (SKF) m 51/l and g 50, which yield the covariance1for the model b 5 b 1 e with e | N(0, g I ) andt t21 t t 1 p matrix of the RLS algorithm. Estimates of the
b |N(b , g I ). In general, we prefer to interprett 0 0 p adaptation coefficients with criterion (12) are given0

(11) as a nonparametric smoother which is consistent in Table 1; as we may see, the reduction of the
with the assumption of parameters as unknown statistic Q with respect to the values in (8) is veryN
functions of time. significant. Moreover, even better results were ob-

Algorithm (11) involves p15 unknown coeffi- tained by modeling the differenced series z as ant
cients, whose range of variation is somewhat wide. AR(5) scheme (see last row).
Until now, only heuristic rules have been provided To further comment on Table 1 we note that,
for their design (see Salgado et al., 1988). Given a unlike results in (8), the solution with the unit-root
sample hZ , Z , . . . ,Z j, it seems appropriate to solve1 2 N constraint is significantly better, in terms of statistic
the problem in terms of parametric estimation, by Q , than the other (in row 1). This is due toN
optimizing a loss function based on prediction errors optimization (12) which is nonlinear and performs
(see Grillenzoni, 1994) better on stabilized (differenced) series. The negative

value of the ‘‘stepsize’’ coefficient (a) may be
ˆˆˆ ˆ ˆ ˆ attributed to nonlinearity (in the variables) of the[a, l, m, g ; g , b ] 5 arg min QH1 0 0 N N

IBM series (see Tong, 1990). Fig. 6 shows the path
N ˆˆ ˆof the estimates h b , G , a j generated by filter (11)t t t2ˆ95 O [Z 2 x b ] (12)Jt t t21 with the coefficients in row 3 of Table 1. It can be

t5p11
seen that the final goal of adaptive modeling, i.e. to

ˆˆ 9obtain stationary innovations a 5 z 2 x b , wasThis belongs to the conditional least squares (CLS) t t t t21

nearly achieved.method discussed in Klimko and Nelson (1978);
As was previously discussed, adaptive forecastingTjostheim (1986), where ‘‘conditional’’ refers to the

may be improved by building ARMA models for theset of past information of prediction errors. It is

Table 1
CLS Estimates of the coefficients of filter (11) applied to the models (8a,b)

Model g l51/m a f f f /u f f Q0 10 20 30 30 40 50 N

(8a) 1.0348 0.9561 20.1599 1.3563 20.3574 0.1511 2 2 8270
(8b) 0.9385 0.7823 21.0576 0.5463 20.4513 0.0683 2 2 5410
z |AR(5) 0.0602 0.7985 2 1.1302 0.7901 2 0.7091 0.2756 0.0471 2 0.0696 3677t

(40.1) (151.3) (14.5) (61.8) (15.2) (14.9) (3.5) (4.4)
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ˆ ˆ ˆ ˆ ˆFig. 6. Path of recursive estimates of the AR(5) model of the differenced IBM series: (a) f ———, f - - -, f ??? ?; (b) f ———, f1t 2t 3t 4t 5t
ˆ ˆ- - -; (c) G , i51 . . . 5; (d) a ———, z . . . ..iit t t

ˆ ˆparameter estimates b . Analysis of series f in Fig. each time 6 forecasts were computed. Plots of theset it

6(a,b) has led to AR(1) schemes; thus, for the model statistics are given in Fig. 7 for model (8a), and in
with unit root the predictor becomes Fig. 8 for model (8b) augmented as an AR(5). We

may see that the adaptive solutions are significantlyˆ ˆf (h) 5 a 1 b f (h 2 1) (13a)it i i it better.
To comment on Fig. 7, we note that time-varying5

ˆ models perform better than their constant parameterˆ ˆz (h) 5O f (h 2 1)z (h 2 i) (13b)t it t
i51 versions over the whole forecasting horizon. In

comparing dashed lines, we also note that theˆ ˆ ˆZ (h) 5 Z (h 2 1) 1 z (h) (13c)t t t solution without the unit-root constraint has lower
ˆ MAPE for all h.2. This substantially changes thewith initial value Z (0)5Z . Comparisons with con-t t

conclusion obtained from the analysis of the fittingstant parameter models (8) were done with MAPE
statistics Q in Table 1 and confirms the results ofstatistics computed as in Fig. 5; specifically, forecast N

previous section.origin was changed 10 times starting from t561, and
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Fig. 8. Recursive estimates of the parameter of model (14) of the
ˆ ˆ ˆ ˆAirline series: (a) f ———, f - - -, 2 f ??? ?; (b) u1t 12t 13t 1tFig. 7. MAPE statistics of constant (———) and adaptive (- - -) ˆ ˆ———2, u - - -, 2u ??? ?.12t 13tmodels of IBM series: (a) model (8a): Z |ARMA (2, 1); (b)t

model (8b) augmented: Z |ARI (5, 1).t

Step 3. Optimize the designs selected at Steps 1 and
3.3. Algorithm 2 by means of the criterion (12).

ˆIt is useful to summarize the procedure we have Step 4. Generate the recursive estimates b by meanst

developed so far: of the coefficients obtained at Step 3 and algorithm
(11).

Step 1. Identify the order of the constant parameter
models in the usual ways. Step 5. Identify constant ARMA models for these

estimates and predict the original series z , Z byt t

Step 2. Estimate the parameters of these models by means of algorithms as (13).
means of the recursive algorithm (11) providing
suitable values for the coefficents a, l, m, g and b , The crucial phase of the method is represented by1 0

g . Step 3. Estimation (12) is highly nonlinear and its0
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convergence may require suitable initial values and
identification constraints. However, simulation re-
sults in Grillenzoni (1994) encourage its use.

3.4. Airline (1-stage)

As was previously discussed, recursive estimators
for multiplicative models are difficult to obtain and
approximate solutions must be developed. The 1-
stage approach requires that such models be ex-
pressed in their equivalent additive form; for the
Airline scheme (5b), reestimation of parameters
provided

Z 50.935 Z 11.126 Z 21.053 Z Fig. 9. MAPE statistics of model (14) (———) and its adaptivet t21 t212 t213
(10.8) (32.6) (9.9)

version (- - -).

20.431 a 20.626 a 10.378 a 1 at21 t212 t213 t performs better than its constant parameter version(3.5) (6.2) (3.1)

(14), but the improvement is not as good as in the(14)
IBM application. This is due to the nature of the
Airline series which is more explosive, but lesswith Q 513 662. Now, the application of methodN

volatile, than the IBM; as a consequence, optimized(11)–(12) to model (14) may be simply obtained by
9 adaptive techniques do not work satisfactorily.defining b95[f . . . u ] and x 5[Z . . . a ] (see1 q t t21 t2q

Grillenzoni, 1991).
3.5. Airline (2-stage)As for the IBM case, the best performance was

provided by algorithm (11) with the constraints m 5

In this subsection we present results of the two1/l, g 50; estimates of the adaptation coefficients1

stage modeling of the Airline series. In the first stepwith criterion (12) are reported in Table 2. We point
we applied method (11)–(12) to the model Z 5out that, despite the strong unstability of the airline t

F Z 1z ; estimates of the coefficients are given inseries, the minimization (12) converged and the t t212 t

Table 3. It is worth noting that the value of Qvalue of statistic Q is significantly lower than that NN

decreases by about 50% over the correspondingof (14). Finally, recursive estimates of the parame-
statistic of model (6a).ters of model (14) generated with algorithm (11) and

Fig. 10 shows the path of recursive estimatesthe coefficients in Table 2 are reported in Fig. 8.
generated with the algorithm (11) implemented withAs in the IBM application, adaptive forecasting

ˆthe coefficients in Table 3. Looking at the series Fwas performed by building AR(1) models for the t

in Fig. 10(a) one may see that its average approxi-series in Fig. 8. MAPE statistics were computed as in
mates the LS estimate in (6a). Further, its trajectoryFig. 3, namely forecast origin was shifted n512
is uniformly outside the unit circle and only ap-times, starting from t5121, and each time forecasts
proaches the boundary 1 at two points. It is interest-were computed for h51 . . . 12; results are reported
ing to note that in correspondence to these points, thein Fig. 9. We may see that the adaptive modeling

Table 2
CLS Estimates of the coefficients of filter (11) applied to the model (14)

g l51/m a f f f u u u Q0 1,0 12,0 13,0 1,0 12,0 13,0 N

0.0100 0.9575 2 0.4047 0.9974 1.314 2 1.302 2 0.4664 2 0.9137 0.1624 10 730
(1.6) (60.1) (5.3) (14.1) (17.3) (12.5) (4.1) (5.6) (3.2)
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Table 3
CLS estimates of the coefficents of algorithm (11) applied to model (9a)

Coefficient F g l a Q0 0 N

Estimate 1.0973 0.00334 0.26921 2 0.22856 18 640
(24.6) (4.2) (37.8) (33.0)

ˆˆinnovations z 5(Z 2F Z ) in the first stage. It ist t t21 t2s

reasonable to focus on this series, rather than on the
ˆˆrecursive residuals z 5(Z 2F Z ), because thet t t t2s

latter may be reduced to zero by simply taking
F̃ 5Z /Z . In Grillenzoni (1993) it is shown thatt t t2s

ˆhz j is nearly stationary and may be represented by at

constant parameter model. To cope with the cross-
ˆˆcorrelation between z , F a bivariate AR model wast t

constructed. The statistic Q associated with theN

ˆequation of z turned out to be slightly lower thant
ˆˆthat of model (6b). Joint modeling of series z , F ist t

also useful in forecasting because the adaptive
ˆ ˆ ˆ ˆpredictor Z (h)5F (h)Z (h212)1z (h) needs thet t t t

ˆˆjoint forecasts z (h), F (h).t t

MAPE statistics produced by this method were
greater than those displayed in Fig. 9; this means
that, for the Airline series, the 1-stage approach is
preferable in forecasting. In general, the choice
between the two methods cannot be defined a priori;
it must be made on the basis of the empirical
evidence. However, there are structural factors that
must be considered when modeling nonstandard time
series.

(i) The first is the inverse relationship between
unstability and nonstationarity. By comparing previ-
ous applications one realizes that the greater an
unstable root, the smaller its tendency to fluctuate
over time. In other words, roots lying well outside
the stability region tend to remain in that region just
because evolutionary components (such as trends,
cycles and seasonalities) are persistent.

(ii) The second is the inverse relationship betweenFig. 10. Recursive estimates of model (9a) obtained with filter
ˆˆ model complexity and algorithm complexity. In the(11) and the coefficients in Table 3: (a) F ; (b) G .t t

airline application we have seen that the problem
arises from the fact that optimization (12) is sensi-

slope of the trend of the series Z changes slightly tive to the number of coefficients d 95[a, b ] (wheret 0

(see Fig. 2). All of these features confirm the validity a95[l, . . . , g ]) to be estimated. Hence, as we fix0

of our method in tracking unstable nonstationary dim (d ), if the order of the model dim(b ) increases,
models. then recursive algorithms must be simplified. The

In the second stage we modeled the stabilized parsimony principle discussed in Box and Jenkins
series in (9b), that was estimated as recursive (1976) assumes crucial importance here.
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(iii) Finally, the goal of the research (namely,
forecasting or signal extraction) should be precisely
defined. If the latter is concerned, then one may
adopt the two-stage approach which allows using
complex algorithms in the first stage. It is worth
noting that the procedure discussed above provides a
time-varying parameter extension of the 2-stage
method of Parzen (1982).

All of these factors must be evaluated, both
theoretically and empirically, when applying adap-
tive methods. On the other hand, other solutions can
be generated by combining the strategies and the
algorithms described in this section.

3.6. Simulations

In this subsection we present results of simulation
experiments that were performed to check the va-
lidity of the methods we have developed in this
paper. The first experiment deals with constant
parameter models; we simulated the process

Z 5 1.03Z 1 a ,t t21 t

a | IN(0, 1), t 5 1,2 . . . 100 (15)t

and we compared the performance of predictors
based on original and differenced series. The latter
were fitted with an AR(1) scheme and out-of-sample
forecasts were computed for h51, 2 . . . 10 steps
ahead, starting from t591. Mean values of MAPE
statistics over N51000 replications are shown in
Fig. 11(a); as we may see, forecasts produced by

Fig. 11. Results of simulation experiments. Mean MAPE statistics
differencing series are worse. This gap increases by of models with (———), without (- - -) unit roots: (a) constant
increasing the size of the root in (15). parameters, (b) varying parameters.

The second experiment focuses on varying param-
eter models. We considered sinusoidal parameters predictor is better than that based on unit roots;
fluctuating on the unit circle: F 5120.05 sin (t /16), moreover, this performance improves if F lyet t
t51, 2 . . . 100 and the same design conditions as in entirely outside the unit circle.

ˆ(15). We compared adaptive forecasts Z (h)5t
ˆ ˆF (h)Z (h21), h51, 2 . . . 10, t591 – where esti-t t

ˆ 4. Conclusionsmates F were fitted with an AR(1) model – witht

those of a standard ARI(1, 1) scheme. Recusive
In this paper we have developed a method ofestimates were generated with an RLS algorithm

adaptive forecasting which is based on the optimi-implemented with g 51, l50.85; however, mean0

zation of recursive estimators. Through applicationsperformance of the adaptive predictor was relatively
to well known data-sets we have demonstrated itsinsensitive to these designs. Mean values of MAPE
validity in several implementations and for differentstatistics over N51000 replications are displayed in
model structures. An important feature is that such aFig. 11(b). As before we may see that the adaptive
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method may run even on time series that contain (1959); Anderson (1959); Rao (1961). These works
unstable components such as trends, cycles and have been surveyed in Grillenzoni (1993), and the
periodicities. fundamental findings are summarized in Table A.

The main conclusion is that unstable models are The exponential nature of the function g(N) may be
better than those with unit-root constraints either in explained by the fact that for Z 50 an unstable0

tfitting or forecasting; moreover, this statement may AR(1) process may be solved as Z 5Ft
t21 i2 tbe partly extended to time-varying parameter model- o F a ; hence, the sum of squares of Z growsi50 t2 i t

2Nings. In general, these modelings improve the corre- at the rate F . In general, with Table A we may see
sponding constant parameter solutions (with and that the convergence of the LS estimator applied to
without unit roots). unstable processes is faster than in the case of

The results achieved are uniformly and signifi- stationary models. The cost of this super-consistency
cantly better than those of standard time series property is the difficulty of making inferences, for
models. However, we do not claim that our method the asymptotic distributions are non-standard and
provides the ‘‘best’’ and ‘‘final’’ solution. Rather, it their dispersions are unknown.
may be further extended by means of adaptation However, in practical terms the natural approach
mechanisms used in signal processing, such as to follow for testing the hypothesis H : F 50

variable tracking coefficients (see Benveniste, 1987). ˆF is to use the Studentized statistics t 50 N
21 / 2 2ˆ ˆ ˆ ˆ ˆDevelopment of empirical applications remains the ˆ(F 2 F )[V(F )] where V(F ) 5 s /N 0 N N N

Nsole way for testing the method. 2o Z . From Table A it is clear that for theS Dt2s
i5s 2conditions Z 5a and a |IN(0, s ) the limiting0 0 t

ˆdistribution of the statistic t under the null F .1 isN 0Appendix A
N(0, 1)

An empirical way for checking the super-consis-
tency property is to make simulations using the leastReview of super-consistency
squares estimator in recursive form (RLS). On-line
implementation processes data one observation atOriginal statistical analysis of the estimators of
time and provides corresponding parameter esti-unstable AR-processes, focused on first order models
mates; in this way it is possible to have a clear2such as Z 5FZ 1a , a |IID(0, s ,`), t5s, s1t t2s t t evidence of the speed of convergence. In Grillenzoni1 . . . where 1#uF u,` and 0#uZ u,`. If Z is0 0 (1993) several simulation experiments were per-fixed or stochastically defined as Z 5a , the dis-0 0 formed, and their results support the conclusions oftribution of the process hZ j is entirely determined byt Table A.that of the sequence ha j; in the gaussian case, LSt

and maximum likelihood methods provide the same
ˆestimator Table A. Asymptotic distribution of g(N)(F 2 F ) when uFu.1.N

ˆN N 21 Case uZ u ha j g(N) f(F )0 t N
2ˆ 2 N 2 21F 5 O Z Z O Z ,S DS DN t t2s t2s 1) 50 IN(0, s ) uFu (F 21) Cauchy

t5s t5s 2 N 2 212) ±0 IN(0, s ) uFu (F 21) Ad-Hoc
N 2 2 N 2 211 3) 50 IID(0, s uFu (F 21) Unknown2 ˆ 2 N 2ˆ ]]s 5 O Z 2 F ZS DN t N t2s ˆ4) ,` IN(0, s ) [o Z /s N(0,1)t5s t2s NN 2 s t5s

]Œ ˆUnder stationarity it is well known that N(f 2N
2 21

f) → N[0, 1(1 2 f ) ]; but this does not apply to
F̂ because its numerator and denominator increaseN References
at a rate faster than N.

The convergence of the above estimator may still Anderson, T. W., (1959). On the asymptotic distribution of
be obtained by defining a standardizing function estimates of parameters of stochastic difference equation.]Œg(N)4 N; see Rubin (1950); White (1958), Annals of Mathematical Statistics, 30, 676–687.
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