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Abstract. Robust nonparametric smoothers have been proved effective in pre-

serving edges in image denoising. As an extention, they are capable to estimate

multivariate surfaces containing discontinuities on the basis of a random spatial

sampling. A crucial problem is the design of their coefficients, in particular those of

the functions which concern robustness. In this paper it is shown that bandwidths

which regard smoothness can consistently be estimated, whereas those which concern

robustness cannot be estimated with plug-in and cross-validation criteria. Heuristic

and graphical methods are proposed for their selection and their efficacy is proved

in simulation experiments.
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1. Introduction

Nonparametric smoothers are often used to estimate spatial surfaces on the

basis of point observations. This happens in many phenomena either natural, as

mapping the concentration of a pollutant on the ground (e.g. Francisco-Fernandez

and Opsomer, 2005), or social, as monitoring the distribution of crimes in a city

(see Levine, 2007). The estimated surfaces are used for creating maps of diffusion

and risk and for planning the necessary reclaim actions. Problems arise when data

contain jumps and discontinuities, due to the presence of physical and institutional

barriers, since classical smoothers tend to blur them.

As an example, Figure 1(a) shows a sample of the laser data used by Wang and

Tseng (2004) to measure the elevation relief in a urban area. Each point consists of

the planar coordinates (x, y), provided by a GPS receiver, and the terrain height (Z)

measured by a laser scanner installed on an aircraft. Data present significant jumps

in correspondence of the building, and measurement errors due flight conditions and

possible mismatch of the two instruments. Figure 1(b) displays the surface generated

by the kernel regression (e.g. Härdle et al., 2002) and shows its inadequacy to track

the building walls. Because in correspondence of the jumps the kernel estimates also

exhibit the largest residuals, it seems natural to solve the over-smoothing problem

with the approach of robust statistics (e.g. Huber, 1981). In practice, data near

the building walls can be considered as outliers and robust smoothers tend to ignore

them in the local fitting. Figures 1(c,d) show the improvements obtained with M-

type smoothers with Huber and Hampel design respectively.

Performance of kernel estimators strongly depends on the bandwidths which

tune the degree of smoothing; in the case of discontinuous surfaces, they must be

designed as small as possible. However, this is not sufficient to delete the bias at the

jump-points and surely increases the variance in smooth regions. On the other hand,

robust smoothing is nonlinear and involves additional coefficients which are related

to the scale parameters. All of these coefficients can be designed with data-driven

criteria based on the cross-validation (CV). In Francisco-Fernandez and Opsomer

(2005), it is shown that the presence of spatial correlation in the residuals yields
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bias in the bandwidths selected with generalized CV. As a solution, they propose

modeling the variogram of residuals and adjusting the CV criteria accordingly. This

original solution can be directly applied to robust smoothing.

Figure 1. Fitting airborne laser data: (a) Raw point data; (b) Kernel smooth-

ing; (c) Robust smoothing with Huber loss; (d) Robust with Hampel loss.
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M-type estimation has provided an important contribution to robust statistics.

His philosophy consists of replacing the objective functions of classical estimators

with functionals ρ(·) which are less sensitive to extreme values. However, two alter-

native approaches are present in the literature: Huber (1981) states that ρ(·) must

achieve its maximum value asymptotically, because outlying observations may con-

tain useful information. On the contrary, Hampel et al. (1986) claim that it should

be strictly bounded, because outliers are usually extraneous to the models. The two

solutions have opposite consequences on the properties of consistency and adaptiv-

ity of the estimates, and they were applied to different problems in nonparametric

smoothing.
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Härdle and Gasser (1984) and Hall and Jones (1990) developed kernel M-

smoothers following the first approach, in particular they referred to the Huber’s

ρ-function. Their estimators were mainly used to resist outliers in univariate mod-

els with fixed and random design respectively. Analogously, Wang and Scott (1994)

considered the L1 approach ρ = | · | and proved its robustness for data with heavy-

tailed densities. Subsequently, Leung et al. (1993, 2005) developed robust strategies

to design the bandwidths; they considered (non-quadratic) CV criteria based on the

Huber’s ρ-function, demonstrating better unbiasedness and consistency. However,

they only focused on the coefficients of the smoothing components of the estimators,

whereas those which tune robustness were selected a-priori.

M-smoothers which follow the Hampel’s approach, were developed by Chu et

al. (1998). They proved their efficacy as edge-preserving denoising filters for digital

images. This property is different from outlier resistance and exploits the adaptive

nature of bounded ρ(·) functions. Subsequently, Rue et al. (2002), Hwang (2004)

extended the method to other kinds of nonparametric estimators, such as local

polynomial regression. Boente et al. (1997) and Burt and Coakley (2000) discussed

bandwidth selection based on robust plug-in strategies. Also in this case, however,

only the coefficients of smoothing components were investigated. The difficulty to

extend this approach to discontinuous surfaces renders CV preferable.

This paper investigates M-smoothers with bounded ρ-functions in the interpo-

lation of spatial data containing discontinuities. Such data arises in many geosta-

tistical and pattern recognition problems, in particular those concerned with laser

scanning (e.g. Figure 1). With respect to image denoising, there is a situation of

random regressors and data with an explicit 3D structure. Using the weighted aver-

age form of M-estimates (e.g. Hampel et al., 1986) we develop robust smoothers with

pseudo-linear structure, which are suitable for large data-sets. Special attention is

devoted to bandwidth selection of both smoothing and robustness components; it is

shown that problems of parametric identifiability arise in the CV selection of the co-

efficients which tune robustness, and heuristic solutions are proposed. Throughout,

simulation experiments are carried out to illustrate the analyses.
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2. Iterative Smoothers

Let {(xi, yi),Zi}n
i=1 be a random sample of spatial measurements as those dis-

played in Figure 1(a). Assume that they can be represented by the model

Zi = g(xi, yi) + εi , εi ∼ IID(0, σ2
ε) ; i = 1, 2 . . . n (1)

where the planar coordinates have a uniform density f(x, y) = α, the response func-

tion g(x, y) = E(Z | x, y) has jumps located at unknown points, and {εi} are inde-

pendent and identically distributed (IID), with symmetric density f(ε). Francisco-

Fernandez and Opsomer (2005) have considered the problem of autocorrelation of

the errors; this may arise either from the spatial clustering of the observations or

from the lack of fit of the model (1), which only captures the spatial trend. In the

case of uniform sampling and edge-preserving smoothing, the risk of autocorrelated

errors is low, whereas in image processing it is a concrete possibility.

As regards the response function of (1), we assume the discontinuous model

g(x, y) = γ(x, y) + δ1 · I
{

(x, y) : y ≥ [ϕ(x) + δ2 · I(x ≥ x0) ]
}

where γ(·) is a continuous function, δ1, δ2 are jumps and I(·) is the indicator function.

In the above scheme, the discontinuity edge follows the relationship y = ϕ(x), which

also has a jump at the point x = x0; whereas, the continuous part γ is bounded

and differentiable. As an example, we consider γ(x, y) = [ 0.75 y − sin(6.3 x) ] and

ϕ(x) = [ 0.5− 0.125 sin(6.3 x) ], with δ1 = 2, δ2 = 0 and 0 ≤ x, y ≤ 1. The surface is

Figure 2. Simulated surface and random sample of the experiment.
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displayed in Figure 2(a) on a grid with resolution 502. A set of n=100 points is

sampled from g(x, y) by assuming (x, y) ∼ U2(0, 1), a bivariate uniform density. A

realization of this design is displayed in Figure 2(b) and the corresponding heights

Zi = g(xi, yi) are blurred with a noise.

The experiment consists of reconstructing the surface in Figure 2(a) by fitting

the data in Figure 2(b) with various smoothers. The basic scheme is the bivariate

kernel (K) regression with product kernels (e.g. Härdle et al., 2002 p.89)

ĝK(x, y) =
n

∑

i=1

vi(x, y) Zi (2)

vi(x, y) =
K1

[

(xi − x)/κ1

]

K2

[

(yi − y)/κ2

]

∑n
j=1 K1

[

(xj − x)/κ1

]

K2

[

(yj − y)/κ2

]

where (x, y) ∈ ℜ2 are the points where the surface is estimated; K1, K2 are symmet-

ric densities, and κ1, κ2 are smoothing coefficients. More complex estimators could

be considered as in Francisco-Fernandez and Opsomer (2005).

The design of κ1, κ2 is usually carried out with the cross-validation (CV) method.

It consists of minimizing the sum of squared prediction errors ε̂i

Qn(κ1, κ2) =
1

n

n
∑

i=1

[

Zi − ĝK−i(xi, yi)
]2

(3)

where ĝK−i(·) are the estimates in (2) obtained by omitting the i-th observation.

By replacing Zi with g(xi, yi) + εi in (3), it can be seen that minimization of Qn is

asymptotically equivalent to the minimization of the average squared error (ASE):

n−1 ∑

i [ g(xi, yi)− ĝK−i(xi, yi)]
2 (e.g. Leung et al., 1993 or Härdle et al., 2002 p.114).

This fact establishes the asymptotic optimality of the CV-approach.

Applying this framework to the data in Figure 2(b), under the choice of Gaussian

kernels and the constraint κ1 = κ2, provided κ̂CV = 0.065. With this value and the

filter (2), we generated the surface in Figure 3(a); panel (b) displays the prediction

errors ε̂i. It can be seen that kernel estimation does not preserve discontinuities

and large errors occur in correspondence of the jumps. To have a measure of the

non-normality of {ε̂i} it can be noted that the sample variance was σ̂2
ε = 0.4732,

whereas the (robust) median absolute deviation (MAD) provided σ̂MAD = 0.081.
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Figure 3. (a,b) Kernel regression estimates of the data in Figure 2(b), obtained

with the algorithm (2), with Gaussian kernels and κ1 = κ2 = 0.065. (c,d) Standard-

ized Moran’s autocorrelations of series Zi (solid) and errors ε̂i (dashed) of the data

in Figures 1 and 2; the dotted bands are 0.95 confidence regions for the null.
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We also test for the presence of spatial correlation in the prediction errors.

Figures 3(c,d) show the standardized Moran’s correlograms of the series Zi in Figures

1(a), 2(b) and of their kernel residuals. The standardization is done under the null

hypothesis and their statistical distribution is asymptotically Normal. Despite of

the jumps, original series are strongly autocorrelated, whereas the estimated errors

are practically white-noises. Francisco-Fernandez and Opsomer (2005) have shown

that the presence of spatial correlation in the residuals increases the variance of ĝK

and the bias of κ̂CV (with respect to the optimal MSE value). They have solved the

problem by modeling the residual variogram on the basis of a pilot smoothing, and

then weighting the generalized CV with the implied autocorrelations. This approach

can be directly extended to robust smoothing.
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Robust estimation tends to solve the problem of oversmoothing of (2) by reduc-

ing the influence of large errors. The formal connection between jumps and outliers

can be shown by including the discontinuous component of g(·) in the noise compo-

nent of (1). Relaxing the ID assumption, it follows that εi have a mixture density

of the type f ∗
ε = f0 · I(y < ϕ(x)) + f1 · I(y = ϕ(x)), where f0 is centred on 0 and f1

is centred on δ1. It is the latter which is responsible for outliers.

The kernel M-smoother is the solution of the locally weighted maximum likeli-

hood type problem (e.g. Härdle and Gasser, 1984)

ĝM(x, y) = arg min
g

[

Rn(g) =
1

n

n
∑

i=1

vi(x, y) ρ
(

Zi − g
)

]

(4)

where the local weights {vi} are defined as in (2), and ρ(·) is a loss function which

reduces the influence of outlying observations on the estimates. With respect to (1),

data near the jump-points can be considered as outliers and robust smoothers tend

to ignore them in the local fitting. However, the mechanism acts as a threshold, so

that jumps in the estimated surface are finally generated.

Following the Huber and Hampel philosophies, the loss function can be designed

as unbounded (a,b) or bounded (c,d), respectively:

a) ρa(ε) =
∣

∣

∣ ε
∣

∣

∣

b) ρb(ε) =







ε2/2 , |ε| ≤ λ

λ |ε| − λ2/2 , |ε| > λ
(5)

c) ρc(ε) =







ε2/2 , |ε| ≤ λ

λ2/2 , |ε| > λ

d) ρd(ε) = −L
(

ε/λ)/λ

where L(·) is a kernel function and λ > 0 is a tuning coefficient. The common

feature of the above criteria is that the score function ψ(ε) = ∂ ρ(ε)/∂ ε is uniformly

bounded; indeed, this is the true necessary condition of robustness. The loss function

(5,a) was stressed by Wang and Scott (1994) and is independent of λ; (5,b) is the

preferred one of Huber, and has a monotone derivative. (5,c) corresponds to the

trimmed method and (5,d) is a smoothed solution which provides redescending

ψ-functions. Graphical behavior of these functions is shown in Figure 4.
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Figure 4. Display of the loss functions in (5) with L(·) Gaussian and λ = 1,

together with the score function ψ = ∂ρ/∂ε and the weight function ω = ψ/ε.
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The minimization of (4), for every point (x, y), typically proceeds by nonlinear

algorithms, such as the steepest descent one

ĝ
(k+1)
M (x, y) = ĝ

(k)
M (x, y) +

n
∑

i=1

vi(x, y)ψ
(

Zi − ĝ
(k)
M (x, y)

)

(6)

where ψ(·) = ρ′(·) and the initial value is ĝ
(0)
M (·) = ĝK(·). However, this solution

is computationally demanding, and is suitable only if the grid of values for (x, y)

and/or the sample size n are small. A simpler approach, which leads to a quasi-

linear (or closed form) solution for (4), can be obtained from the weighted average

form of M-estimates (see Hampel et al., 1986 p.115). Introducing the constraint

K1 = K2 and the notation Kκ(·) = K(·/κ)/κ, one has the following:

Proposition 1. Assume that the nonlinear model (1) is estimated with the

kernel M-smoother (4) with bounded ρ-function (5,d), with L(·) Gaussian. Then,

the iterative algorithm (6) admits the ”pseudolinear” representation

ĝ
(k+1)
M (x, y) =

∑n
i=1 Kκ(xi − x)Kκ(yi − y)Lλ

[

Zi − ĝ
(k)
M (x, y)

]

Zi

∑n
i=1 Kκ(xi − x)Kκ(yi − y)Lλ

[

Zi − ĝ
(k)
M (x, y)

] (7)

Proof. See the Appendix 4.1.
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Algorithm (7) resembles the linear estimator (2) but is iterative, hence the

term quasi-linear or pseudo-linear. Its peculiar feature is the local weighting also in

the direction of the dependent variable Z; actually, it is this weighting that allows

robustness. It should also be noted the relationship of (7) with the linear σ-filter

applied by Chu et al. (1998) to the denoising of digital images Zij

ĝS(i, j) ∝
n1
∑

h=1

n2
∑

k=1

Kκ

(

i− h
)

Kκ

(

j − k
)

Lλ

(

Zij − Zhk

)

Zij

The analogy becomes evident if one replaces ĝ
(k)
M (x, y) within L(·), with the obser-

vation Zj which is spatially closer to Zi. However, this substitution significantly

worsens the jump-preserving ability of the estimator.

The version of (7) corresponding to the trimmed ρ-function (5,c), can be ob-

tained by replacing L(·) with the indicator function I
(∣

∣

∣ Zi − ĝ
(k)
M (x, y)

∣

∣

∣ ≤ λ
)

(see

panel 9 of Figure 4). Instead, in the case of unbounded ρ-functions (5;a,b) the struc-

ture of L(·) is much more complex. The estimates in Figure 1(c) for laser data were

obtained with the nonlinear (4) and the Huber loss, whereas those in Figure 1(d)

were generated with the pseudolinear (7) and the Hampel loss. The jump-preserving

ability of the latter is better, due to the fact that bounded ρ-functions are more ro-

bust and so have better adaptive properties on the edges. In the presence of large

data-sets (as in laser scanning), the speed of (7) can be improved by splitting the

sample in disjoint random sub-subsets. These sub-samples can then be processed

sequentially along with the iterations of the algorithm.

Returning to the simulation experiment, Figure 5 shows the estimates (7) com-

puted on the data of Figure 2(b). They were generated with Gaussian kernels,

κ = 0.065 (which is the CV bandwidth of the kernel estimation) and tentative

values of λ ∈ (0.01, 0.5). The resulting surfaces range from near instability (as in

panel (a)) to near oversmoothing (as in panel (b)); as a consequence, the best choice

seems the intermediate solution in panels (c,d) with λ=0.25. We discuss in detail

the problem of bandwidth selection in the next section. As in Figure 1(c), we have

also checked that the jump-preserving ability of the smoother (4) with loss functions

(5;a-c) was inferior to that of (7).
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Figure 5. Surfaces obtained by fitting the data in Figure 2(b) with the smoother

(7) under the designs K,L Gaussian, κ=0.065 and λ=0.01 (a), 0.5 (b), 0.25 (c,d).
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The ability of robust smoothers to track discontinuities arises from the fact that

they have better local properties with respect to the classical kernel regression. In

particular, they weight observations also in the direction of the dependent variable

Z. Anomalous observations generated by jumps are treated as outliers and therefore

they are censored in the local estimation. As regards the relationships between the

various algorithms, we have shown that the nonlinear problem (4) can be solved with

the weighted smoother (7), which mimics the kernel regression (2). This proves the

close connection between M-smoothers and the σ-filter used in image processing

(e.g. Chu et al., 1998). Finally, the extension of the method to local polynomial

regression can be obtained by replacing the function g with a polynomial gi(x, y)

(see Rue et al., 2002 and Hwang, 2004). If this is linear, the quantity to be used in

Rn-(4) is ρ[ Zi−g0−g1 (x−xi)−g2 (y−yi) ], where g0 provides the surface estimate.

This approach enables smaller bias at boundary regions, however it has a greater

computational complexity and numerical instability.
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3. Bandwidth Selection

For kernel smoothers, the CV method is asymptotically optimal, in the sense

that it provides bandwidths which minimize the asymptotic mean integrated squared

error (AMISE) of the estimates ĝK (e.g. Härdle et al., 2002 pp.110-114). Thus, the

criterion Qn-(3) could also be used for robust smoothers; the sole warning is that

at each i-th point, the estimates must be properly iterated. For example, for the

algorithm (7) the leave-one-out estimate of the regression function is

ĝ
(k+1)
M−j (xj , yj) ∝

n
∑

i6=j

Kκ(xi − xj)Kκ(yi − yj)Lλ

[

Zi − ĝ
(k)
M−j(xj , yj)

]

Zi

computational advantages of pseudolinear algorithms are now clear. Application

to the data of Figure 2(b) provided κ̂CV = 0.06 and λ̂CV → ∞, which means

that the robust smoother tends to the kernel estimator, namely ĝM → ĝK. This

disappointing situation was also observed by Hall and Jones (1990, p.1717) as regards

M-smoothers with Huber ρ-function, applied to regression models contaminated by

outliers. However, they did not investigated the underlying causes.

Because classical CV is based on squared prediction errors, it is very sensitive

to outliers generated by jumps, even when a robust smoother is used to preserve

them. The presence of just one outlier is sufficient to yield biased estimates of the

bandwidths, either in the direction of oversmoothing or undersmoothing. Leung et

al. (1993) and Wang and Scott (1994) have solved this problem by using robust

cross-validation (RCV) criteria. They claim that a better approximation to the

MSE optimality in finite samples can be obtained by minimizing

Pn(κ, λ) =
1

n

n
∑

j=1

̺
[

Zj − ĝ
(k)
M−j(xj , yj)

]

(8)

where ̺[ · ] can be one of the ρ-functions in (5). The side-effect of (8) is that the

̺-error optimality of the estimates is not demonstrated, just because the expression

of κ which minimizes E{∫ ∫

̺[ ĝM(x, y) − g(x, y)] dx dy} is unknown (e.g. Boente et

al., 1997). However, under regularity conditions, as those listed in the Appendix,

the RCV approach is asymptotically optimal.
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Proposition 2. Assume that model (1) has continuous response function (i.e.

g = γ), and is estimated by the M-smoother (4). Then, under the assumptions A1-

A5 listed in the Appendix, the bandwidth κ̂RCV which minimizes the criterion (8), is

asymptotically optimal in MSE sense and is independent of the function ̺(·).
Proof. See Leung (2005) and Appendix 4.2.

This result confirms the optimality of the CV approach (e.g. Hall and Jones,

1990 p.1754), even in its robust version (8), whose main constraint is that ̺(·) has

bounded first derivative. The practical consequence is that robust plug-in strategies

of Boente et al. (1997) can be avoided in the estimation of κopt. These methods

are better than cross-validation, but are computationally demanding. On the other

hand, many authors have not considered the estimation of λ and just selected it

a-priori in the context of the Huber ρ-function (e.g. Leung, 2005).

The simplest choice of ̺(·) in the functional Pn-(8) is the absolute criterion

(5,a), because it does not need the specification of a tuning coefficient λ̺ (say). For

the other ̺-functions (5;b-d), the coefficient λ̺ must be designed according to the

Figure 6. Paths of quadratic and absolute CV functions for the coefficients

(κ, λ) of the smoother (7), applied to the data of Figure 2(b).
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experimental conditions (e.g. Leung, 2005). The graphs of the CV functions (3)

and (8) applied to the data in Figure 2(b), is given in Figure 6. In agreement with

Proposition 2, we found that robust criteria have a similar path; therefore, we only

show that of the absolute ̺-function. Here, we can see that quadratic and absolute

criteria yield close estimates of κ (0.05, 0.06). Instead, for the second coefficient,

only the robust criterion has a well-defined minimum at λ = 0.75. However, this

value is too large and does not enable jump-preserving (see Figure 5(b)).

Figure 6 shows that CV methods are inadequate to design the robustness coef-

ficient λ. The reason is that such coefficient should be sensitive to the jumps and

discontinuity edges, but these points form a set which has area zero. In other words,

the number of observations near to, or on the jump-points is too small to influence

the CV functions. This situation can be formalized as follows:

Proposition 3. Assume that the model (1) is estimated with the M-smoothers

(4),(7) and assume that the bandwidths κ, λ are selected with the CV criteria (3),(8).

Then, the robustness coefficient λ is not parametrically identified, i.e. λopt → ∞.

Proof. See the Appendix 4.3.

This result explains the difficulties of Hall and Jones (1990), Chu et al. (1998)

and Hwang (2004) in using quadratic CV to select the robustness coefficients of M-

smoothers of Huber and Hampel type. On the other hand, Wang and Scott (1994)

and Boente et al. (1997) just avoided the problem by using the absolute criterion,

both in the equation (4) and (8). Finally, Leung et al. (1993, 2005) assigned a-priori

values to λ on the basis of the experimental conditions.

Before proceeding, it is useful to investigate the behavior of the cross-validation

criteria in Monte Carlo simulations. Figure 7 has the same information content

as Figure 6, but is based on the mean values of 30 independent replications. The

patterns are now much clearer, and confirm that Qn-(3) and Pn-(8) have similar and

well-defined minima with respect to κ (0.055, 0.045). Instead, the minimum point

λ = 0.6 in Figure 7(d) is biased upward because yields oversmoothing. These results

empirically confirm the conclusion of Proposition 3.
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Figure 7. Mean values of quadratic and absolute CV functions, for the coeffi-

cients (κ, λ) of the smoother (7), on 30 replications of data of the model (1).
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In robust statistics, λ has the role of scale parameter and is estimated or de-

signed according to the distribution of outliers. However, when this is unknown,

λ should just realize a trade-off between efficiency and robustness of the estimates

(e.g. Maronna et al., 2006 p.65). Indeed, the robustness is inversely proportional to

λ, but the efficiency (in the absence of outliers), is directly proportional to it. Now,

setting λ = Cσε, with C > 0, it can be shown that M-estimates of the mean of a

Gaussian model maintain 95% relative efficiency with respect to least-squares only

if 1 < C < 5. Specifically, for the Huber loss one has CH = 1.345, whereas for the

Tukey bisquare function one has CT = 4.685 (see Fox, 2002). This approach can be

extended to M-smoothers with negative Gauss loss.

Proposition 4. Assume that model (1) has continuous response function (i.e.

g ≡ γ) and Gaussian disturbances εi. Then, under the assumptions A1-A5 listed in

the Appendix, the M-smoother (7) with design λ = 2.111 σε maintains 95% asymp-

totically relative efficiency (ARE) with respect to the Kernel estimator (2).

Proof. See the Appendix 4.4.
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Since the bandwidth κ and the scale σε are consistently estimable (see Proposi-

tion 2), we can define effective strategies to design λ. With reference to the data in

Figure 2(b) and the value κ̂RCV = 0.05 of Figure 6(b), we have 3 solutions:

1. Heuristic. Under the assumption of f(ε) Gaussian, the ARE solution of size

94% suggests λ = 2 σε. In this case, the crucial point is the choice of the error

variance. The estimate σ̂MAD = 0.076 yields the mild value λ̂ARE = 0.152, and

the results in Figure 5 confirm its validity.

2. Constrained. In order to solve the non-identifiability problem of λ, one may

impose the constraint λ = Dκ and then apply the cross-validation selection.

The definition of the constant D > 0 strongly depends on the structure of the

kernel L(·). However, a specific design could be obtained from the heuristic

solution, such as D̂ = λ̂ARE/κ̂RCV ≈ 3.

3. Graphical. Chu et al. (1998) suggested ”visual evaluation” of the estimates

ĝM to tune the bandwidths. This approach can be made less subjective by

defining the set of admissible values. Running the M-smoother (7) with κ̂RCV

and tentative values for λ, one can find the sets S1 = {λ < λ∗1 } for which it is

unstable (namely ĝM → ∞), and S2 = {λ > λ∗2 } for which it is oversmoothed

(i.e. ĝM → ĝK). The optimal design is then given by the midpoint λ∗ =

(λ∗1 + λ∗2)/2, and in Figure 5 we obtained λ∗ = 0.25.

Summarizing the results of these methods we have λ ∈ (0.15, 0.25). It is interesting

noting that this set includes the maximizing point of Figure 7(c), rather than the

minimizing point of 7(d). Given the relationship between quadratic cross-validation

and the average squared error, it can be shown that the path of ASE(λ|κ̂RCV) =

n−1 ∑

i[ g(xi, yi) − ĝM(xi, yi)]
2 is close to Figure 7(c). Hence, it seems that optimal

value of λ is the one which maximizes the MSE. This seeming contradiction arises

from the fact that discontinuity edges have area zero and, in smooth regions, the

estimator ĝM is less efficient than ĝK. In other words, the adaptivity of robust

smoothers at the jump-points is largely paid for in the continuous regions.
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The simplest selection strategy we have outlined so far can be summarized as:

Algorithm. The robust design of the M-smoothers (4),(7) is given by:

Step 1. Select κ̂RCV by minimizing the robust criterion (8) with ̺ = | · |,
Step 2. Select λ̂ARE = 2 σ̂MAD by using the prediction errors at Step 1.

At Step-1, given the non-estimability of λ, it may be preferable to use a simple

Kernel smoother such as (2). In this case, the pattern of the RCV function Pn(κ)

would become much more smooth than those in Figures 6(b) and 7(b).

We conclude by iterating the experiment of Figure 5 on ten independent real-

izations {xi, yi,Zi}. Running kernel and robust smoothers with κ̂ = 0.05 (see Figure

7(a,b)) and λ = 0.01, 0.2, 0.4 and averaging the resulting estimates, we obtained the

surfaces in Figure 8. Again, we see that λ = 0.01 generates instability (the blanks

in the panel (b) mean ∞ values) and λ = 0.4 yields oversmoothing. Hence, the best

choice is the midpoint λ∗ = 0.2.

Figure 8. Mean values of kernel and robust estimates (2) and (7), generated

with κ = 0.05 and λ ∈ [ 0.01, 0.4 ], on 10 independent replications.
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4. Conclusions

In this paper we have investigated the problem of fitting point data, sampled

by discontinuous surfaces, with robust smoothers. Main fields of application are

in geostatistics and environmetrics, especially in urban areas. We have check that

kernel M-smoothers have a good jump-preserving ability if they are implemented

with bounded loss functions (or redescending score functions). This performance

can be attributed to the best adaptive capability of robust smoothers with respect

to the conventional ones. Using the weighted average form of M-type estimates,

we have developed iterative smoothers which retain a linear structure. These turns

out particularly useful for computing cross validation functions and, therefore, for

selecting optimal bandwidths. In this paper we have shown that coefficients which

tune robustness are not parametrically identified (with respect to CV) and heuristic

rules must be adopted for their design. We have proposed 3 strategies which provide

similar values and have worked well in simulation experiments.

4. Appendix: heuristic proofs

Main Assumptions

We summarize the technical assumptions underlying the nonlinear model (1) and

the nonparametric estimators.

A1. The density function f(x, y) is uniform and has bounded support, f(ε) is

symmetric about zero and twice differentiable f ′′(ε).

A2. The continuous component γ(·) of the regression function g(·) is twice

differentiable and has
∫∫

γ′′(x, y)2 dx dy <∞.

A3. The kernel functions K1, K2, L of the M-estimators (4) and (7) are contin-

uous density functions, symmetric about zero.

A4. The loss functions ρ(·), ̺(·) of the M-estimator (4) and CV criterion (8),

are symmetric about zero and have bounded first derivatives.

A5. Asymptotic analyses of the estimators are performed under the condition

nκ→ ∞ as n→ ∞ and κ→ 0, where κ = (κ1 = κ2).
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Let us also define the following moments and integral notations

µ2(F ) =
∫

u2F (u) du, S2(F ) =
∫

F (u)2 du (9)

4.1 Proof of Proposition 1

From the first order condition of (4) one has R′
n(g) =

∑

i vi(x, y)ψ(Zi − g) = 0 ;

letting 0 = g − g and iterating one obtain the steepest descent algorithm (6). In

the parametric context, M-estimators in weighted average form were introduced by

Tukey by defining the residual weight function ω(ε) = ψ(ε)/ε (see Hampel et al.,

1986 p.115). Now, inserting ψ(ε) = ω(ε) ε in the equation R′
n(g) = 0, we have

n
∑

i=1

vi(x, y)ω(Zi − g) Zi =
n

∑

i=1

vi(x, y)ω(Zi − g) g

and solving for g, in iterative form, provides the weighted (W) smoother

ĝ
(k+1)
W (x, y) =

[

n
∑

i=1

vi(x, y)ω
(

Zi − ĝ
(k)
W (x, y)

)

]−1 n
∑

i=1

vi(x, y)ω
(

Zi − ĝ
(k)
W (x, y)

)

Zi

(10)

Now, in the case of the loss function (5,d), with L(·) Gaussian, one has

ψ
(

Zi − g
)

=
−1√
2πλ

exp

[

− 1

2

(

Zi − g

λ

)2
]

−1

λ2

(

Zi − g
)

that is ω(·) ∝ L(·) (see Figure 4), and the estimator (7) directly follows from (10).

In parametric models, it can be shown that W-estimators have the same influence

function and asymptotic variance as M-estimates (e.g. Hampel et al., 1986 p. 116).

If the weights vi(x, y) are non-negative, the same property can be extended to robust

smoothers and one can conclude that (6) and (7) are statistically equivalent.

4.2 Proof of Proposition 2

Consider the simple model Z = g(x) + ε, with g continuous and x fixed (this will

be relaxed later). For the M-smoother (4), Leung (2005) has shown that the RCV

criterion is asymptotically equivalent to the average squared error (ASE) and its

expectation. It follows that κ̂RCV which minimizes (8) converges to

κ̂MASE = arg min
κ

E
{

ASE =
1

n

n
∑

i=1

[

ĝM(xi) − g(xi)
]2

}
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Now, the mean ASE is asymptotically equivalent to the mean integrated squared

error (MISE, see Härdle et al., 2002 p.110), whose asymptotic expression for (4) can

be obtained from Härdle and Gasser (1984) or Boente et al. (1997)

AMISE[ ĝM(x) ] =
1

4
κ4 µ2

2(K)S2(g
′′) +

1

nκ
S2(K) E[ρ′(ε)2] E[ρ′′(ε)]−2 (11)

where µ2, S2 are operators defined in (9) and ρ(·) is the loss function of (4). Notice

that the above combines elements of the simple kernel regression and the parametric

M-estimation of a location parameter (e.g. Huber, 1981) and is minimized by

κopt =

{

S2(K)

µ2
2(K)S2(g′′)n

· E[ρ′(ε)2]

E[ρ′′(ε)]2

}1/5

(12)

Summarizing, we have κ̂RCV → κ̂MASE → κopt, and the remarkable fact is that κopt

is independent of the loss function ̺(·) used in (8). It follows that also κ̂RCV is

independent, the only constraint is that ̺′(·) is bounded (see assumption A4).

Under the assumption A1, the extension of (12) to x stochastic is direct because

the density f(x) is uniform. However, the analysis must be performed with condi-

tional expectations to the set Xn = [x1, x2 . . . xn]. The MASE becomes E{ASE |Xn},
and the conditional MISE becomes E{ ∫

[ ĝM(x)− g(x) ]2f(x) dx |Xn}, which is also

weighted by f(x) (see Wand and Jones, 1995 p.138). When x is stochastic, the

conditional variance behaves like
√
nκ V[ ĝK(x)|Xn] → S2(K) σ2

ε/f(x); moreover, if

f ′(x) = 0 the conditional bias is equal to that of x fixed (e.g. Härdle et al. 2002

p.93). It follows that the asymptotic conditional MISE of ĝM is similar to (11) with

just S2(g
′′) recomputed as

∫

g′′(x)2f(x) dx (see also Hall and Jones, 1990 p.1715).

This slight modification should also be inserted in (12).

4.3 Proof of Proposition 3

Consider the simple model Z = g(x) + ε, with a jump located at the point x = x0.

Under the assumptions A1-A5, the asymptotic MSE of the M-estimator (4) has been

investigated by Chu et al. (1998) and Rue et al. (2002). Its conditional expression

can be summarized as follows
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E
{

[ ĝM(x) − g(x)]2
∣

∣

∣Xn

}

≈






(π δ)2 + π(1 − π) δ2, x ∈ (x0 ± κ) (a

C1 κ
4 + C2/(nκλ

3), x elsewhere (b
(13)

where δ > 0 is the size of the jump and π =
∫ ∞
δ/2 f(ε) dε. The equation (13,a) shows

that the MSE does not vanish asymptotically and, therefore, the M-smoother is not

consistent at the jump point x0. However, the formula of π shows that if f(ε) has a

bounded support, with range less than δ, then the consistency may exist (see also

Hillebrand and Müller, 2006).

The formula (13,b) holds for g(·) continuous, and the constants are given by

C1 =
1

4
µ2

2(K) g′′(x)2 , C2 = σ2
ε S2(K)S2(L

′) fε(0) f ′′
ε (0)−2

Burt and Coakley (2000) have provided an expression of the MSE which also includes

a complex term C3 κ
3/(nλ5). However, this confirms that the robustness bandwidth

is present in (13) only in the form 1/λ. It follows that the minimization of the

MSE only admits the solution λopt → ∞, which means that the coefficient is not

parametrically identified. The practical consequence is that λ cannot be designed

with CV techniques because these are asymptotically MSE optimal.

Expression (13,b) suggests other important remarks about λ. First, the con-

sistency of ĝM in continuous regions holds even when λ ≫ 0; the true necessary

condition is that nκ → ∞ (see assumption A5). This fact is natural in parametric

M-estimation where λ has the role of scale parameter, but it is not well recognized in

the analysis of M-smoothers, where it is considered a bandwidth, hence λ→ 0 (see

Hwang, 2004 or Hillebrand and Müller, 2006). Finally, the expression of κ which

minimizes the AMISE of (13) is similar to (12) with ρ = −L

κ∗opt =

{

σ2
ε S2(K)

µ2
2(K)S2(g′′)n

· S2(L
′) fε(0)

λ3 f ′′
ε (0)2

}1/5

This bandwidth could be estimated with robust plug-in methods (see Boente et al.,

1997, or Burt et al., 2000), but they require an a-priori choice for λ.
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4.4 Proof of Proposition 4

Consider the simple model Z = g(x) + ε, with g continuous and f(x) uniform;

the weighted conditional AMISE of the kernel regression (2) is given by (11) with

the term E(·)/E(·)2 replaced by σ2
ε . Therefore, from the variance components, the

asymptotic relative efficiency (ARE) formula becomes

ARE
(

ĝM, ĝK

)

=
σ2

ε

τρ
, τρ =

E [ ρ′(ε)2 ]

E [ ρ′′(ε) ]2
(14)

which is independent of κ. Now, considering the ρ-function (5,d), with L(·) Gaussian,

one has ρ′(ε) = −N(ε; 0, λ)ε/λ2; therefore

E
[

ρ′(ε)2
]

=
∫

[

u/λ2

√
2π λ

exp
(−ε2

2λ2

)

]2 [

1√
2π σε

exp
(−ε2

2σ2
ε

)

]

dε

=
1

2πλ6σε

∫

ε2

√
2π

exp
(−ε2

λ2
+

−ε2

2σ2
ε

)

dε

=
1

2πλ6σε

√
α

∫

ε2

√
2πα

exp
(−ε2

2α

)

dε , α =
σ2

ελ
2

2σ2
ε + λ2

=
σ2

ε

2πλ3(2σ2
ε + λ2)3/2

(15)

Analogously, it can be shown that ρ′′(ε) = N(ε; 0, λ)/λ2 − N(ε; 0, λ)ε2/λ4, and

using β = (σ2
ελ

2)/(σ2
ε + λ2) one can obtain

E
[

ρ′′(ε)
]

= E

[

1√
2π λ3

exp
(−ε2

2λ2

)

]

− E

[

ε2

√
2π λ5

exp
(−ε2

2λ2

)

]

=
1

√

2π(λ2 + σ2
ε )λ

4

∫

[

λ2

√
2πβ

exp
(−ε2

2β

)

− ε2

√
2πβ

exp
(−ε2

2β

)

]

dε

=
1

√

2π(λ2 + σ2
ε )λ

4

(

λ2 − β
)

=
1

√

2π(λ2 + σ2
ε)

3
(16)

Substituting (15) and (16) into (14), and letting λ = Cσε, it follows

ARE
(

ĝM, ĝK

)

=
λ3(2σ2

ε + λ2)3/2

(λ2 + σ2
ε)

3
=
C3(2 + C2)3/2

(C2 + 1)3

and for C=2 we have the level of ARE=0.94. Of course, for kernel smoothers this

result holds only in continuous regions of a regression surface.
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