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1. Introduction

The mean-shift (MS) algorithm, Fukunaga and Hostetler (1975), Silverman

(1986, p.132), is a method for clustering spatial data and segmenting digital im-

ages. The algorithm iteratively moves points and pixels toward the modes of the

kernel density function (KDF) of the data, by just exploiting the first-order con-

ditions. Convergence properties of MS have been studied by Comaniciu and Meer

(2002), Carreira-Perpiñán (2007), Li et al. (2007) and Aliyari Ghassabeh (2013);

they have proved that its estimates, initialized with the observed data, converge

monotonically at a linear rate, to the modal values of the kernel density.

Blurring mean-shift (BMS) is a smoothed version of MS, which increases the

speed of convergence up to a cubic rate, see Carreira-Perpiñán (2006). It is par-

ticularly useful in processing large data sets, as those produced in video sequences

and laser scanning (e.g. Grillenzoni, 2007). However, BMS was criticized by Rao et

al. (2009), by showing that it is less accurate than MS and is biased with Gaussian

kernels, as it converges to a single cluster. This issue was already discussed by

Cheng (1995), who distinguished between BMS with broad and flat kernels, and

investigated the properties of truncated functions. Now, since the simple MS also

converges to a single point when its bandwidth is large, one may wonder if the bias

of BMS also depends on the bandwidth selection. This issue has not been cleared

by Chen (2015), who has recently improved the analysis of Cheng (1995).

Carreira-Perpiñán (2006) showed the advantages of using Gaussian kernels in

BMS, and provided a stopping rule for iterations to prevent convergence to biased

solutions. He also developed a sparse matrix implementation which further increases

the speed of the method. In this work we discuss the conditions of convergence of

BMS and suggest a nearest-neighbor implementation which avoids explicit kernel

truncations. We also develop automatic, data-driven, techniques of bandwidth se-

lection which are based on the statistical optimization of the number of groups in a

classification. Simulation experiments and real case-studies show the efficacy of the

proposed solutions, both to identify the right number of clusters and to converge to

their centroids. The superiority of Gaussian BMS algorithms will be proven.
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The paper is organized as follows: Section 2 discusses censored BMS algorithms

and their conditions of convergence. Section 3 develops techniques of bandwidth

selection based on clustering. Section 4 presents various numerical applications.

2. Mean-Shift Algorithms

Let {xi}
N
i=1 be a real data-set in ℜd space. In spatial data, one usually has d=5

because in laser scanning (or seismology) it contains 3 spatial coordinates, the mea-

surement time and the infrared reflectance (or the magnitude): x′
i = [xi, yi, zi; ti, ri].

Similarly, in continuous data as digital images, it contains 2 spatial coordinates and

3 color intensities (RGB). The goal of clustering is to group data in m > 1 homo-

geneous sets, having minimum inner variance:
{

{xi,k}
Nk

i=1

}m

k=1
, where

∑m
k=1 Nk = N .

We have denoted the target groups in italics, because they are unknown quantities

to be estimated, together with their centroids x̄k = N−1
k

∑Nk

i=1 xi,k.

Statistical properties of the data are entirely described by their probability den-

sity function f(x). We assume that it is differentiable with mo > 1 modal points

µk, where first derivative vanishes: f ′(µk)=0. The function can be estimated with

nonparametric methods, such as the kernel density (Silverman, 1986):

f̂N(x; β) =
1

βdN

N
∑

i=1

K
[

(x − xi)/β
]

, x ∈ ℜd,

where K(z) ∝ exp(−.5‖z‖2) is the Gaussian kernel and 0<β <∞ is the bandwidth.

The shape of f̂N depends on the size of β; this is usually selected by minimizing

the mean integrated squared error (MISE): E{
∫

[f̂N(x) − f(x)]2dx}. As shown by

Silverman (1986), if f(x) is univariate Gaussian, then the optimal bandwidth is

given by βo ≈ σx/N
0.2, where σ2

x is the variance of data. For this reason, we do not

equate the coefficients σx, β, where the latter tends to 0 as N → ∞.

The clustering approach followed by MS is to shift each data point xi toward

the regions of f̂N with higher density. This is obtained with the first-order condition

f̂ ′
N(x) =

∑

j K[(x − xj)/β] (x − xj) = 0, and solving iteratively for x:

MS : x̂
(t+1)
i =

N
∑

j=1

K
[

(x̂
(t)
i − xj)/β

]

∑N
l=1 K[(x̂

(t)
i − xl)/β]

xj , x̂
(0)
i = xi , (1)
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where (t) is the iteration counter and xi is the starting value. Since MS is hill

climbing and K(·) is monotonically decreasing, the estimates (1) converge to the

modes µ̂k of the kernel density; see Li et al. (2007) and Aliyari Ghassabeh (2013):

lim
t→∞

x̂
(t)
i = µ̂k , k = 1, . . . , m̂ , ∀ i ,

f̂ ′
N(µ̂k) = 0 , ‖xi − µ̂k‖ � ‖xi − µ̂h‖ ,

for any N, β. Notice that each x̂
(t)
i converges to the nearest mode in its basin of

attraction, and the number of estimated modes m̂ depends on the size of β. In

general, the optimal bandwidth (that minimizes MISE) does not provide unbiased

identification of the number of modes mo of f ; hence, one cannot state E(µ̂k) = µk.

Also the selection techniques of β used in the kernel estimation of derivatives f ′

(e.g. Chaćon and Duong, 2013) are not suitable when mo is large. In Section 3 we

develop specific methods for selecting β which may approach mo.

The basic idea of blurring MS is to treat the estimates (1) as new data in the

subsequent iteration; in practice, it smoothes previously smoothed (i.e. blurred)

data. This leads to the nested algorithm

BMS : x̃
(t+1)
i =

N
∑

j=1

K
[

(x̃
(t)
i − x̃

(t)
j )/β

]

∑N
l=1 K[(x̃

(t)
i − x̃

(t)
l )/β]

x̃
(t)
j , x̃

(0)
i = xi , (2)

where the original data are used only in the first iteration. The convergence of (2) is

allowed by the fact that its first iteration coincides with that of (1): x̃
(1)
i = x̂

(1)
i for

all i. Subsequent iterations shrink previously shrinked data, so that the convergence

of (2) is guaranteed (see Chen, 2015).

As a formal argument, let HN be the convex-hull of {xi}
N
i=1, i.e. the minimal

convex set which contains xi. For the estimates x̃
(t)
i we have H̃

(t)
N ⊇ H̃

(t+1)
N for all

t, because x̃
(t+1)
i =

∑N
j=1 w̃

(t)
ij x̃

(t)
j is a convex combination of all points. Given the

nested structure of sets H̃
(t)
N , they converge to the bounded limit HN =

⋂∞
t=0 H̃

(t)
N .

Carreira-Perpiñán (2006) showed that the convergence speed of BMS increases up to

a cubic rate over (1); however, the side-effect is the asymptotic bias of the algorithm.

This means the tendency of estimates x̃
(t)
i to converge to a single point HN = µ0,

after having reached local centroids (not the modes of f̂N).
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The asymptotic bias of the blurring estimator (2) stems from the fact that it

implicitly maximizes the measure of concentration

CN

(

{xl}
N
l=1; β

)

=
N

∑

i=1

N
∑

j=1

K
[

(xi − xj)/β
]

, (3)

(see Cheng, 1995). Indeed, if K(·) is Gaussian, then (2) arises from the condition

∂ CN/∂xi =
∑

j

K
[

(xi − xj)/β
]

(xi − xj) = 0 ,

and solving iteratively for xi. Since the function (3) is maximized by xi = xj for all

i, j, it follows that BMS estimates always converge to a single point µ0. Obviously,

this would make useless the clustering results provided by (2).

2.1 Censored Estimators. Last remarks can be extended to all infinite-

support kernels, as they virtually cover the entire data range (see Cheng, 1995).

However, in numerical applications, the computer precision actually cuts off infinite

supports (this is clear in the random number generation). Hence, it is useful to

investigate the behavior of algorithms with truncated kernels, such as

tBMS : K∗
α(z) = Kβ(z) · I(|z| ≤ α) , 0 < α < ∞ , (4)

where I(·) is the indicator function. For suitable α, β, the kernel (4) does not cover

the entire data set, and one can define conditions of convergence to multiple centers.

In the Appendix it is shown that for α = 3β (i.e. K∗
α covers 99.8% of Kβ Gaussian),

and local centroids {µk}
m
1 , the blurring estimator based on (4)

tBMS converges to 1 center if β > max
k,h

‖µk − µh‖/6 ,

tBMS converges to m centers if β < min
h,k

‖µk − µh‖/6 , (5)

Condition (5) means that the kernel diameter 2α = 6β must be less than the mini-

mum distance between µk. It allows point estimates to have no reciprocal influence,

once they are converged to their nearest local centroids (see Appendix).

Instead of cutting off the kernel support, it may be preferable to compute BMS

estimates only on their n < N/m nearest neighbors (NN), as

nBMS : x̌
(t+1)
i =

n
∑

j=1

K
[

(x̌
(t)
i − x̌

(t)
ji )/β

]

∑n
l=1 K[(x̌

(t)
i − x̌

(t)
li )/β]

x̌
(t)
ji , x̌

(0)
i = xi , (6)
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where x̌
(t)
ji is the j-th NN term of x̌

(t)
i . The algorithm (6) directly limits the number

of observations that the estimates manage. It is equivalent to a truncated BMS

(4) with variable bandwidth {βi}
N
1 and αi = 3βi; where these coefficients provide

a fixed number n of observations to each estimate x̃
(t)
i . The constraint n < N/m

involves a β∗ ≤ maxi(βi) which satisfies the condition (5); hence, it enables the

convergence to different centroids (see Appendix). Indeed as in (3), the objective

function of (6) is given by Cn =
∑N

i=1

∑n
j=1 K

[

(xi − xji)/β
]

; this is maximized by

xi = xji , j = 1, 2 . . . n, and theoretically yield ⌊N/n⌉ groups.

It may be noted that the estimator (6) is related to the local mean (LM) algo-

rithm, which computes arithmetic means on the neighbors of each point

LM : x̄
(t+1)
i =

1

n + 1

n
∑

j=0

x̄
(t)
ji , x̄

(0)
ji = xji , (7)

where xji is the j-th NN term of xi = x0i. The main difference between (7) and (6)

is in the weights wji, which are uniform and decreasing respectively. Their difference

should vanish as t → ∞, because both methods shrink data while their bandwidths

β, n remain constant. Unlike the K-means method (which randomly select m initial

values, and does not shrink data), the algorithm (7) always converges to its global

optimum, and for n ≤ mink(Nk) < N/m provides multiple centroids.

2.2 Stopping Rules. There are other ways to control the bias of the blurring

estimator (2), without changing its structure. The first consists of letting the band-

width β → 0 as t → ∞ at a cubic rate, which is the convergence rate of (2), see

Carreira-Perpiñán (2006). Alternatively one may stop the iteration process when

subsequent or neighboring estimates become sufficiently close, that is

MS : t̂ = min
{

t :
1

N

N
∑

i=1

∥

∥

∥ x̂
(t)
i − x̂

(t−1)
i

∥

∥

∥ < δ
}

,

BMS : t̃ = min
{

t :
1

Np

N
∑

i=1

p
∑

j=1

∥

∥

∥ x̃
(t)
i − x̃

(t)
ji

∥

∥

∥ < δ
}

, (8)

for some p ≥ 1, where x̃ji is the j-th NN of x̃i, and δ > 0 is a small constant.

The first criterion does not work for BMS (2) with infinite support kernels, because

the data points move together towards a single center (after having reached their
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nearest local centroids). This problem is avoided by the solution (8), which considers

simultaneous neighboring points. It represents a simple alternative to the entropy

approach of Carreira-Perpiñán (2006), that focuses on the histogram of estimate

variations. Obviously, stopping criteria for BMS (2) are also useful for algorithms

(4)-(7), to reduce computations and the bias caused by the bad design of β.

3. Bandwidth Selection

As shown in Section 2, convergence and performance of MS-type algorithms

fundamentally depend on the size of their bandwidth. The selection methods of β

developed in kernel density estimation (e.g. Silverman, 1986) are not suitable for

MS clustering. In this section we provide data-driven methods for the algorithms

(1),(2),(6),(7); next we will check their validity with simulation experiments.

3.1 Clustering Statistics. We start with techniques based on the identifi-

cation of the number of groups of classical cluster analysis. In this context, the

optimal value of m is determined by maximizing information criteria (which bal-

ance likelihood function and cluster complexity), or F -type statistics, which com-

pare explained and residual variances, weighted by their degrees of freedom. In the

MS-algorithms m depends on β, thus one can select the bandwidth as

β̂ = arg max
β

[

FN

(

m(β)
)

=
B(m)/(m − 1)

W (m)/(N − m)

]

, (9)

where B, W, are between-group and within-group total deviances, computed on the

original data with the partition {xi,k}
m(β)
k=1 provided by MS-estimates. In practice,

B(m) =
m

∑

k=1

Nk‖x̄k − ¯̄x ‖2 , W (m) =
m

∑

k=1

Nk
∑

i=1

‖xi,k − x̄k‖
2,

where x̄k = N−1
k

∑Nk

i=1 xi,k and ¯̄x = N−1 ∑N
i=1 xi are data centroids.

Algorithm. The detailed procedure for selecting the value of β with the F -statistic

(9) in MS-type algorithms is as follows:

Step 1. Define a set {βl}
L
1 , such that the number of groups m(β1) ≥ 2 and m(βL) ≤

M , where M ≪ N is the expected maximum number.
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Step 2. For each βl run MS, BMS, LM algorithms until convergence to their

centroids: µ̂i,k = limt→∞ x̂
(t)
i (βl), where k = 1, . . . , m(βl).

Step 3. Perform data partition and labeling, i.e. find the groups {xi,k} which

correspond to every center µ̂i,k, where i = 1, . . . , Nk.

Step 4. Use the clusters {xi,k} to compute data-centroids x̄i,k, between-group

B(m(βl)) and within-group W (m(βl)) deviances.

Step 5. Compute the statistics FN(m(βl)) (9) and find the maximum value over

the set l = 1, . . . , L. This defines the optimal β.

Data partition at Step 3 usually requires the identification and removal of anomalous

(isolated) observations. However, this problem does not arise in blurring algorithms,

since their shrinking ability also allows for robustness.

Another approach for selecting the number of groups is based on the silhouette

index SN of Rouseeuw (1986). This measures the goodness of a classification by com-

paring the data distances within clusters, with the data distances between clusters.

As in (9), MS-algorithms provide the partition {xi,k}, then the selection is

β̂ = arg max
β

[

SN

(

m(β)
)

=
1

N

m
∑

k=1

Nk
∑

i=1

( B̄i,k − W̄i,k )

max (B̄i,k, W̄i,k)

]

, (10)

where W̄i,k, B̄i,k are the mean distances of the i-th observation from the members of

its class (k-th), and from the members of its nearest group (h-th), that is:

W̄i,k = (Nk − 1)−1
∑

j

‖xi,k − xj,k‖ ,

B̄i,k = min
h 6=k

(

N−1
h

∑

j

‖xi,k − xj,h‖
)

.

Notice that SN ∈ (−1, +1), where high values indicate good clustering, because

B > W ; the algorithm for computing (10) is similar to that of (9).

3.2 Specific Indicators. A heuristic solution for MS (1) is based of the differ-

ence between modal values and data-centroids. While the modes are the limit of the

estimates x̂
(t)
i , the centroids x̂k are the corresponding means computed on original

data. Since the two statistics are based on the same membership list, significant

difference between them means inadequacy of fitting; hence, the selection of β is

β̂ = arg min
β

m
∑

k=1

∥

∥

∥ µ̂k(β) − x̂k(β)
∥

∥

∥ , (11)
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where µ̂k = limt→∞ x̂
(t)
i and x̂k = N−1

k

∑

i xi,k use the same data-partition. The

statistic (11) provides a fitting measure between data and MS estimates.

For BMS (2), we note that the index of concentration CN (3) is monotonically

increasing in β, whereas the number of clusters m is monotonically decreasing in

β. The optimal bandwidth should then balance the two quantities, so as to find a

compromise between variance reduction (C) and cluster complexity (m). Thus, β

can be selected by minimizing the sum of the two rescaled functions

β̃ = arg min
β

[

JN(β) = C̃∗
N(β) + m̃∗(β)

]

, (12)

C̃N(β) = N−2
N

∑

i=1

N
∑

j=1

K
[

(x̃
(t)
i − x̃

(t)
j )/β

]

,

where m̃ is the number of centroids of x̃
(t)
i . The indexes C̃, m̃ are computed over

a grid of {βl}, and then are standardized (denoted by *), to have unit scales. This

approach is similar to the information criteria, but avoids inferential aspects.

In the presence of a-priori informations on the distance between centers, one

can select the bandwidth by using the relationship (5), namely

β = min
h,k

‖µh − µk ‖ /6 , (13)

Similarly, for LM algorithm (7) one can select the NN size as n=mink(Nk) or

n=N/m. The validity of these solutions can be checked by simulations.

Finally, the stopping rules of iterations may also be useful for the bandwidth

selection itself, because the size of β determines the speed of the convergence process.

Small bandwidths yield many clusters, whereas large βs lead to few clusters; in both

cases, many iterations are necessary to converge. Instead, the optimal bandwidth

enables the right/easy clustering of the data; hence, it should involve the smallest

number of iterations t. It follows that the bandwidth selection based on the stopping

criterion (8) is simply given by:

β̃ = arg min
β

t̃ε(β) . (14)

It should be noted that the use of stopping rules enlarges the set of admissible βs

(those which provide unbiased centroids), and in general reduces the bias of estimates

caused by non-optimal bandwidths (see Grillenzoni, 2014).
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The path of statistics (9)-(14) may not be strictly convex, but they have the

global minima in correspondence of the optimal β. To avoid conflict between the

methods, one can build a single index by summing their normalized values.

4. Simulations and Applications

As a simulation experiment, we consider the Gaussian mixture model of Rao

et al. (2009), which consists of m=16 bivariate components (d=2), with spherical

covariance matrix I2σ
2=0.01, and means placed on the unit circle (C):

f(x) =
16
∑

k=1

πk N
(

x; µk, I/100
)

, x ∈ ℜ2, µk ∈ C(0, 1) . (15)

The weighs are not uniform: 0.044 ≤ πk ≤ 0.088, but
∑

k πk=1; the number of

simulated data is N=1500, and a sample is displayed in Figure 1(a).

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)  data  x
i

0 5 10 15
0

50

100

150

(b)  weights N
k

Figure 1. Simulated data: (a) Centers µk (•, red) and N=1500 data xi (+, blue)

generated with the model (15); (b) Size of components Nk = πkN .

Given the proximity of the centers, it is difficult to recover them by using clas-

sical clustering methods; however, the adaptive nature of MS-algorithms can tackle

the problem. Rao et al. (2009) used the bandwidth β=σ=0.1 and two stopping

criteria for the algorithms (1), (2), which yielded t=46, 20 iterations respectively.

Their results showed the effectiveness of MS and the significant bias of BMS, which

provided only m=14 centroids and 12 correct estimates. We have confirmed these

results; however, by using the criterion (13), we note that the optimal bandwidth

for BMS should be around β=0.4/6=0.067.
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To shed light on this issue, we run BMS (2) with β ∈ [0.05, 0.10], and t=100

iterations. Figure 2 displays the resulting functions C̃N (3) and m̃; they show that

BMS provides 16 centroids for β ∈[0.075, 0.08], and that CN is constant for β ≤

0.08. At a finer grid, we check that BMS is unbiased for β ∈ Sβ = [0.072, 0.084],

with centroids which are close to the modes of MS (see Figure 3). The width of this

set is significantly different from zero and slightly decreases by letting t=1000, which

means that BMS converges for suitable bandwidths. Notice that the identified set

Sβ does not contain β=0.067 of equation (13), because the value z=3 in (13) may

be too large. In fact, using P(|z| ≤2.57)=99% one can get β=0.4/(2*2.57)=0.077,

where 0.4 is the minimum distance of centers.

0 20 40 60 80 100

0.06

0.08

0.1

0.12

0.14

#  iterations

(a)  Concentration  C

0 20 40 60 80 100
5

10

15

20

25

#  iterations

(b)  # Clusters  m

Figure 2. Path of BMS statistics: (a) C̃N(t|β)/N2; (b) m̃(t|β); for β ∈[0.05-0.075]

(·, red) and β ∈[0.08-0.1] (·, blue).

Table 1. Results of MS-methods applied to the data in Figure 1(a): Sβ is the set of

bandwidths which provide unbiased estimates (m=16). β∗
1 is the minimum value

which leads to a single centroid (m=1). The value of n of the algorithm (6) is 100.

Method Eq. tmax Sβ=[βmin, βmax] β̇0
∑

k ‖µ̂k − µk‖/m maxk ‖µ̂k − µk‖ β∗
1

MS (1) 100 0.067 - 0.109 0.088 0.018 0.049 0.86

BMS (2) 100 0.072 - 0.084 0.078 0.017 0.047 0.31

BMS (2) 3000 0.068 - 0.078 0.073 0.017 0.045 0.28

nBMS (6) 100 0.072 - 0.092 0.082 0.017 0.046 na

sBMS (8) 12 0.072 - 0.096 0.084 0.017 0.047 0.35

LM (7) 100 61 - 65 63 0.019 0.053 876
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We can also check the equation (5a) (which states that β > 2/6=0.33, where 2

is the range of data), by finding that the minimum β for which BMS converges to

a single point is indeed β∗
1=0.31. Table 1 resumes the results of all MS algorithms

applied to the data of Figure 1(a). The various methods perform similarly in terms

of mean and maximum errors of the centroids estimated with β̇0 (the central value of

Sβ). The only noticeable fact is that Sβ of MS is wider than that of BMS; however,

the latter can be enlarged by using the stopping rule (8) or the NN version (6)

with n=100. In particular, the NN solution does not admit a finite β∗
1 . Finally, the

optimal value of n for LM (7) is close to mink(Nk)=66 mentioned in Section 2.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)

−0.02 0 0.02 0.04

0.96

0.97

0.98

0.99

1

1.01

1.02

(b)

Figure 3. Final estimates x̂
(100)
i obtained with the bandwidths β̇0 in Table 1: (a)

Ground centers (o, black), MS (×, blue), BMS (+, red), nBMS (+, magenta), LM

(•, black); (b) A particular of the first center.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)  Kmeans(m=16)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b)  BMS(β=.075)

Figure 4. Comparison of clustering methods for the data in Figure 1(a): (a) Cen-

troids x̄k provided by K-means with m=16 and r-replications: r=3-14 (×, blue),

r=15 (+, red); (b) Results of BMS with t=3-14 iterations: estimates x̃
(t)
i (×, blue),

their data-centroids x̃k (+, green); both quantities at iteration t=15 (∗, red).
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Figure 3 displays the final estimates x̂
(100)
i generated by the central value β̇0

in Table 1. All methods perform similarly and satisfactorily and, as said in the

previous section, BMS and its NN version are almost identical. Figure 4 compares

the performance of K-means and BMS methods; Cheng (1995) showed that the

latter is a limiting case of the first. K-means was implemented with m=16 groups

and r=3-15 replications (of starting points), and BMS with β=0.075 and t=3-15

iterations. It can be seen that K-means can be biased, whereas BMS reaches the

target in few iterations. Figure 4(b) also shows the different path of BMS estimates

x̃i and their data-centroids x̃k, in converging to the same centers µk. This difference

is exploited by the selection criterion (11).

4.1 Bandwidth Selection. The analyzes conducted so far have strongly relied

on the use of the ground centers µk, which are unknown in real-life applications.

We now check the ability of data-driven methods to select the MS bandwidths. The

selection methods commonly used in kernel density estimation and its derivatives

(e.g. Chacón and Duong, 2013) have provided very variable results, in general

outside the admissible sets in Table 1. In particular, bandwidth values in Table

2 are external to Sβ=[0.067, 0.109] of the MS method; the sole exception is the

univariate MISE plug-in method of Sheather and Jones (1991), implemented by

Ripley and Wand (2014) in the program KernSmooth.

Table 2. Results of bandwidth selection performed with kernel smoothing packages

of R-Cran (e.g. Duong, 2014), on the data of Figure 1(a). Methods are: CV=cross

validation, BCV=biased cv, LSCV=least squares cv, NS=normal scale, PI=plug-in

MISE, SCV=smoothed cv. The entries are the mean values β̂ = (β̂1 + β̂2)/2.

R-package d F BCV LSCV NS PI SCV

ks 2 f 0.052 0.0024 0.045 0.008 0.010

ks 2 f ′ . 0.148 0.074 0.015 0.025

KernSmooth 1 f . . . 0.075 .

sm 2 f 0.048 . 0.210 0.063 .

kedd 1 f 0.046 0.041 . 0.376 0.052

kedd 1 f ′ 0.584 0.045 . 0.584 0.584

13



More useful results are provided by the methods described in Section 3. Figure

5 displays the estimates of the criteria (9)-(14) (over a grid of β) for the BMS

algorithm with the stopping rule (8), and with 100 iterations (in red). It can be

seen that all methods select the value β=0.08, which is close to the optimal one in

Table 1. Notice that some paths are not strictly convex; however, they have well

defined global minima/maxima.
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Figure 5. Graph of selection criteria of BMS bandwidth: (a) F -statistic (9), (b)

Distance (11); (c) # Iterations (8); (d) Silhouette (10); (e) J-statistic (12); (f) #

Clusters. Estimates with: stopping rule (8) (·−, blue), and 100 iterations (−, red).

Figure 6 shows the combination of criteria (9)-(14) for MS, BMS, LM with

the stopping rule (8) and with 100 iterations (in red). The various functions are

standardized and changed in sign so as to make their scale and pattern homogeneous.

It can be noted that all methods select values which agree with β̇0 in Table 1.
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Figure 6. Sum of standardized criteria (9)-(14) for: (a) MS; (b) BMS; (c) LM.

Estimates with stopping criteria (8) (·−, blue), and with 100 iterations (−, red).
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4.2 Monte Carlo. Previous results deal with a single sample from the model

(15). We now perform a Monte Carlo simulation experiment, which consists of 100

replications. We focus on the BMS algorithm with stopping rule (8) and ε=1e-4.

Figure 7(a) displays the selection functions of β, obtained by combining criteria

(9)-(14), and their mean value (in white). Figure 7(b) shows the path of admissible

sets Sβ (which provide 16 centers) sorted by width, and the bandwidths selected

with the functions in Figure 7(a). The results agree with those in Table 1, since the

mean values (over 100 replicates) are S̄β=[0.072, 0.098] and β̄=0.079.

0.06 0.08 0.1

0

5

10

β

(a)

0 20 40 60 80 100

0.06

0.08

0.1

replications

β

(b)

Figure 7. Results of BMS over 100 replications of (15): (a) Selection functions of β

which combine (9)-(14), mean value (·−, white); (b) Admissible sets Sβ sorted by

width (solid); Bandwidths β̂ selected with the functions in panel (a) (·−, red).

4.3 Image Analysis. We consider a problem of image segmentation which

deals with the picture ”hand” in Figure 8(a). As in Carreira-Perpiñán (2006), the

original image is resized to a 40×50×3 array, which provides a matrix with N=2000

rows; the resulting d=5 columns are standardized in order to use a single bandwidth.

We apply MS-methods by selecting β through the combination of criteria (9)-(14);

the results are shown in Figure 8. The K-means method in Panel (e) is run with

the ideal value m=3 and 15 replicates; it can be noted that it is unable to detect

the ring, and also fails to identify the background table as a single cluster. MS-

methods rightly detect the 3 parts of the image, but the simple MS is not optimal in

detecting the ring. Its problems also arise from the fact that the function in Panel

(b) indicates two values β=0.6, 1; the first was excluded because yields 5 clusters.

A similar problem is present in LM method (7) in Panels (d), where only n=600

provides 3 clusters; however, Panel (h) shows that its segmentation is similar to that
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of K-means. Finally, the best method is BMS (2) with β=0.7, for three reasons: the

convexity of the selection function 8(c), the convergence in 11 iterations with the

stopping rule (8), and the right segmentation in 3 coherent groups.
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Figure 8. Results of image segmentation: (a) Resized test image; (b)-(d) Selection

functions for β, n which combine (9)-(14); (e)-(h) Clustering results for K-means,

MS, BMS and LM methods.

4.4 Complex data-sets. As suggested by a referee, MS methods may have

problems when the clusters have very different dimensions and non-homogeneous

dependence structure. We check this issue by simulating a 3D Gaussian mixture,

which has mo=8 centers placed on the vertexes of a cube, 2x4 proportions 0.05≤

πk ≤0.25 and 5 different covariance matrices. A sample of size N=1000 is displayed

in Figure 9(a); Panels (c)-(g) show the bandwidth selection functions obtained by

combining the statistics (9)-(14). Notice that only the LM method fails to identify its

coefficient n; therefore, we adopt n∗=120 which allows for 8 clusters. This situation

is a consequence of the fact that clusters have very different size, with Nk ranging

from 50 to 200. Table 3 provides the MSE of modal estimates and data centroids

(with respect to the ground centers µk); the best method is nBMS implemented

with n=120, whereas the results of LM are very disappointing.
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Figure 9. 3D Gaussian mixture simulation: (a) Data (x, blue), means (•, red); (b)

Center estimates provided by K-means (×, red), and BMS: x̃
(t)
i (+, blue), its data-

centroids x̃k (+, green); (c)-(g) Bandwidth selection functions of various methods.

Table 3 also provides the results of MS methods applied to biological data, as Iris

flowers (N=150, d=4, mo=3), and Wine features (N=178, d=13, mo=3), available

from the UCI database (http://archive.ics.uci.edu/ml/). In both cases it is

known the true cluster composition, so that wrong classifications can be directly

detected. The two data-sets need different transformations in order to minimize the

number of bad classifications of K-means: Iris prefers normalization of variables by

their maximum value; whereas Wine wants classical standardization. Both methods

enable to use a single bandwidth in MS methods. In K-means we select the number

of groups m by combining the Silhouette index (10) with those of Davies-Bouldin,

Calinski-Harabasz and Krzanowski-Lai (see Wang et al. 2009). In the Iris example,

however, these are not able to detect the right value mo=3; thus, in this and similar

cases the coefficients (denoted by *) are assigned to obtain mo groups. Summarizing

Table 3, we can state that the worst method is the simple MS, whereas the best one

is nBMS: the Gaussian blurring algorithm based on n nearest neighbors. It provides

the best combination of fastness and accuracy and its bandwidth β can be selected

with data-driven methods; also the value of n can be selected in this way, although

nBMS is not very sensitive to it.
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Table 3. Results of MS-methods applied to the data of Figure 9, and to Iris and

Wine data-sets. The coefficients m, β, n with * are not selected with data-driven

methods, and must satisfy the ground value mo. The algorithm (6) uses n = N/m.

Data Statistics K-means MS BMS nBMS LM

Figure 9 m, β, n 8 1.05 1.05 1.15 120∗

(original) MSE(x̂
(t)
i , µk) . 0.671 0.415 0.379 2.54

· MSE(x̄k, µk) 0.571 0.518 0.533 0.455 1.82

Iris m, β, n 3∗ 0.073∗ 0.073 0.073 50

(normalized) # wrong 6 26 5 5 6

Wine m, β, n 3 1.42∗ 1.05∗ 2.3 50

(standardized) # wrong 6 27 26 5 5

5. Conclusions

In this paper we have analyzed and compared clustering methods based on the

mean-shift of kernel densities. The blurring version is a natural extension of the

simple MS algorithm; it enjoys properties of fast convergence but also accuracy, as

shown by many numerical applications. We have checked that its problems of bias

(i.e. the tendency to converge to a single cluster), largely depend on the bandwidth

selection. In this paper we have provided automatic (data-driven) criteria of band-

width selection which lead to the correct detection of the number of clusters. The

introduction of stopping criteria, and the nearest-neighbor implementation, can also

improve the performance of the BMS method.

Appendix: Convergence of BMS Estimators

The analysis of the conditions of convergence of the algorithms (2),(4) and

(6) requires some results of Cheng (1995) and Chen (2015). The latter considers

BMS estimators in which the kernels may not be integrable. They must only be

positive and decreasing with respect to the distance (PDD); that is 1 ≥ K(u, v) =

K(‖u − v‖) → 0 as ‖u − v‖ → 0. Then, for a finite data set {xi}
N
1 one has:
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Theorem (Chen, 2015). If the function K(x) in the BMS (2) is PDD, then

there exist values {c1, . . . , cM}, with M ≤ N , such that limt→∞ x̃
(t)
i = ci for all i.

The convergence here is of numerical type (as the data do not change), and does

not mean that limit values ci are different. The proof is elegant but long, and can be

summarized as follows: One first considers the convex hulls (minimal convex sets)

of the estimates; since they have a nested structure they converge to Hc. Next, for

each vertex of Hc, there is at least one point which tends to it; finally, the influence

between converged estimates and the other points tends to zero, i.e.

lim
t→∞

K
(

x̃
(t)
i − x̃

(t)
j

)

= 0 for all j, such that lim
t→∞

x̃
(t)
j 6= lim

t→∞
x̃

(t)
i (16)

The theorem only requires the PDD condition; however, there are kernels that pro-

duce trivial results, in which all data points converge to a single center c0. Theorem

3 of Cheng (1995) shows that this occurs when the kernel’s support covers the entire

data set; this result can be seen as a Corollary of the above.

Corollary (Chen, 2015). Let the range Rx = maxi,j ‖xi −xj‖. If K(x) is PDD

with K(Rx) > 0, then there exists a point c0, such that limt→∞ x̃
(t)
i = c0 for all i.

As a proof note that
∥

∥

∥x̃
(t)
i − x̃

(t)
j

∥

∥

∥ ≤ Rx for all t, i, j, by the convex hull property;

and since K is decreasing, one has K
(

x̃
(t)
i − x̃

(t)
j

)

≥ K(Rx) > 0 for all t, i, j. This

contradicts the condition (16); therefore all estimates must converge to c0.

It follows that a condition for non-trivial convergence of BMS, is that its function

K(x) = 0 for x > x0, with x0 < Rx. For infinite support kernels, this may be

approached by imposing an essential truncation on K; in the Gaussian case, the 3-

sigma rule provides K∗
3β(z) = Kβ(z) I(|z| ≤ 3β), where I(·) is the indicator function.

In this case the kernel diameter is x0 = 6β < Rx, and the condition becomes

β < Rx/6. However, this is only a necessary condition, the sufficient one replaces

Rx with the range of centers Rc. We then have the following:

Proposition. Let the data {xi}
N
1 have local centroids {ck}

m
1 with minimum dis-

tance rc, and let cki be the nearest center to xi. Then BMS estimates with bandwidth

β < rc/6 and kernel K∗
3β(z), are such that limt→∞ x̃

(t)
i = cki for all i.
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The proof is a consequence of the above results, and of Theorem 4 in Cheng

(1995). It is known that the convergence of BMS estimates proceeds in two phases:

in the first, x̃
(t)
i → cki quickly, subsequently cki → c0 slowly (see Carreira-Perpiñán,

2006). However, owing to the above Corollary and to the kernel K∗
3β, the second

phase takes place only if β > Rc/6, where Rc = maxh,k ‖ck − ch‖. On the contrary,

if β < rc/6, with rc = minh,k ‖ck − ch‖, then estimates remain on their nearest

centroids by result (16). In fact, if two point data xi on ck and xj on ch have no

actual influence, as K∗
3β(ck − ch) = 0, then they do not attract reciprocally.

As regards the nBMS algorithm (6) with n < N/m, notice that it is equivalent

to a truncated BMS with variable βi and αi = 3βi ; these coefficients have to allow

the same number n of observations to each estimate. The resulting algorithm is

encompassed by a truncated BMS with bandwidth β∗ ≤ maxi(βi) and α∗ = 3β∗,

which converges to multiple centroids. In fact, since n and β∗ vary proportionally,

then there exists a n < N/m such that β∗ satisfies the condition (5). In particular,

as in (3) the objective function of (6) is given by Cn =
∑N

i=1

∑n
j=1 K

[

(xi − xji)/β
]

;

this is maximized by xi = xji , j = 1, 2 . . . n, and theoretically yield m < N/n

groups. Local centroids of nBMS then correspond to local maxima of CN(3).

Dynamic Analysis. A general framework for analyzing the behavior of BMS

estimators (2)-(7) is to consider them as dynamical systems. Rewrite the algorithms

as x̃
(t+1)
i =

∑

j w̃
(t)
ij x̃

(t)
j , and in matrix form one has

X̃
(t+1)

β = W̃
(t)

β X̃
(t)

β =
t

∏

s=0

W̃
(s)

β X = P̃
(t)

β X (17)

where X̃N×d are the estimates, W̃ N×N are the kernel weights, and XN×d are the

data. Equation (17) is a large scale inhomogeneous Markov system, and W̃
(t)

β are

row-probability matrices, because
∑

j w
(t)
ij = 1 for all i. Now, if K(·) has a bounded

support as (4), or
∑

j is limited to n < N/m terms as in (6) and (7), then W̃
(s)

β are

sparse and P̃
(t)

β converges to a block-diagonal matrix P β. The system (17) will then

reach the steady-state X̃ = P βX, with m̃ > 1 different rows (centroids).

On the contrary, when the kernel support is broad as in (2), the weights are

w̃
(t)
ij > 0 for all i, j, t, and P̃

(t)

β converges to a dense matrix with identical rows π′
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(the so-called equilibrium distribution). This result is due to the averaging affect of

probability matrices, and is well known when W̃ is constant, because P̃
(t)

= W̃
t
.

This can be extended to variable matrices under the condition ‖W̃
(t)

β − W̃ β‖ → 0

(see Isaacson and Madsen, 1976 p.170), which holds for (17) given the convergence

to fixed points of BMS estimates for all β (see Theorem of Chen, 2015).
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