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Abstract The paper compares recursive methods for detecting change points in

environmental time series. Timely identification of peaks and troughs is important

for planning defense actions and preventing risks. We consider linear nonparametric

methods, such as time-varying coefficients, double exponential smoothers and pre-

diction error statistics. These methods are often used in surveillance, forecasting

and control, and their common features are sequential computation and exponen-

tial weighting of data. The innovative approach is to select their coefficients by

maximizing the difference between subsequent peaks and troughs detected on past

data. We compare the methods with applications to meteorological, astronomical

and ecological data, and Monte-Carlo simulations.
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1 Introduction

An important topic in monitoring environmental time series is the detection of turn-

ing points, i.e. sequential identification of periods where the slope of a series changes

sign. This problem is different from forecasting, nevertheless it is crucial for planning

defense actions. For example, in meteorology, knowing the beginning of a period

of dry weather leads to rationing water resources, delaying sowing or anticipating

harvesting. In urban areas, timely identification of turning points in temperature

is important to calibrate heating systems and reduce power consumption. Recent

interest in climate changes also urges the correct identification of turning points in

the pattern of ecological time series. This is useful for checking size and causes of

the changes (e.g. Piao et al. 2011), although data are not easily available.

The study of turning points in cyclical time series was mainly developed in

econometrics, where it has followed three approaches. In the first method the series

are smoothed with adaptive filters, then first and second difference of the estimated

signals are analyzed as the order conditions of continuous functions (e.g. Wildi

and Elmer 2008). The second approach is typical of change-point problems and

uses sequential tests to detect changes in the mean level. Common statistics are

moving averages and cumulative sums (CUSUM, e.g. Manly and MacKenzie 2000),

which are equivalent to the likelihood ratio under Gaussianity. The third method

estimates models with time-varying parameter (TVP) that are related to the slope

of the series. Switching regression models assume a finite number of states, whereas

recursive estimators treat continuous parameters (e.g. Ljung 1999).

The main disadvantages of these solutions are as follows: Smoothing methods

have problems of accuracy at the borders of the series and delay in the detection

(e.g. McAleer and Chan 2006). Change-point methods are suitable for locally sta-

tionary processes, but not for cyclical time series; e.g. Chin and Apley (2008) show

the detection problems that test statistics have in the presence of nonstationarity.

Finally, the efficacy of TVP methods can be hindered by the assumptions made

on the parameters. For example, stochastic coefficients and hidden Markov models

require complex estimators (e.g. Achcar et al. 2011).
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To avoid these problems, this paper deals with sequential exponential methods.

In particular, we use the double exponential smoother (DES) to estimate the trend

of the series; we focus on the exponentially weighted moving average (EWMA) of

forecast errors as control statistic; finally, we apply the exponentially weighted least

squares (EWLS) to estimate TVP models. The common feature of these methods is

their adaptive and nonparametric nature; however, they deal with different moments

of the series, such as mean level and auto-covariances.

Exponential methods involve smoothing parameters that must be properly de-

signed. These coefficients are usually selected with forecasting and control criteria

which, however, may not be suitable for point detection; in addition, the sequential

monitoring also involves the coefficients of the alarm limits. As in econometrics, this

paper jointly selects smoothing and alert coefficients through the maximization of

the height difference between detected peaks and troughs (e.g. Bock et al. 2008).

Since the maximum difference occurs between the actual turning points, it follows

that the proposed solution pursues unbiased detection.

The scheme of the work is as follows: Section 2 introduces models representation

and estimation, and defines the detection rules for turning points. Section 3 deals

with the selection of smoothing and alert coefficients. Section 4 applies the methods

to real and simulated data and compares their performance.

2 Detection models and methods

2.1 Smoothing methods

Given a non-stationary time series Xt, the representation which is used in many

smoothing applications is given by

Xt = µt + yt , yt ∼ fy(0, σ
2
t ) , t = 1, 2 . . . T, (1)

where µt = E(Xt) is the trend, and yt is not in general independent and stationary.

However, the autocorrelation and heteroskedasticity of yt do not affect the bias of

nonparametric smoothers (see Beran and Feng 2001).
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In the econometric literature turning points are usually defined on Xt, or its

realizations (see Zellner et al. 1991). However, this approach is problematic, Xt

being a stochastic process. Since µt is deterministic, it enables a rigorous definition

of turning points as local troughs (ri) and local peaks (si) of the function itself:

troughs ri : µri−d ≥ . . . ≥ µri−1 > µri
< µri+1 < . . . < µri+d ,

peaks si : µsi−d ≤ . . . ≤ µsi−1 < µsi
> µsi+1 > . . . > µsi+d ,

for some d ≫ 1. Given the interval [1,T ], we assume that the sequence {ri, si}

contains n ≪ T/2 pairs, which can be ordered as 1 ≤ r1 < s1 < r2 < . . . < sn ≤ T .

In this sub-section we identify the periods {ri, si} by estimating µt with smoothing

methods, and then finding its local minima and maxima.

The simplest one-sided smoother is the EWMA, which assumes that Xt fluctu-

ates around a constant mean. In the presence of trend components, the DES model

provides a suitable estension. Brown (1963 p. 130) defined it as

simple Ŝt = λ Ŝt−1 + (1 − λ) Xt , Ŝ0 = c1,

double µ̂t = λ µ̂t−1 + (1 − λ) Ŝt , µ̂0 = c2, (2)

where λ ∈ (0, 1] is a weighting factor which gives more weight to recent data, and

c1, c2 are fixed initial conditions.

The algorithm (2) is mainly used in forecasting. As in the linear trend model,

the forecast function is the sum of a level and a slope component. In the Brown’s

approach these components can be estimated from (2) as

level Ât =
(

2 Ŝt − µ̂t

)

,

slope B̂t =
(

Ŝt − µ̂t

)

(1 − λ)/λ , (3)

X̂t+k = Ât + B̂t k ,

which corresponds to the Holt-Winters algorithm (see Chatfield et al. 2001). As

concerned the estimation of the model (1), one can use either µ̂t or Ât, although the

latter is less smooth. For the sake of parsimony, the equations of (2) use the same

coefficient λ; in Section 3 we will discuss its selection.
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The detection of turning points in Xt, can just be defined on the local minima

and maxima of the function µ̂t. Since the estimates are affected by noise, a tolerance

value 0 ≤ κ < ∞ must be introduced to reduce the number of false alarms. The

decision rule, which is necessarily delayed by one lag, then becomes

troughs ri :
(

µ̂ri+1 > µ̂ri
+ κ

∣

∣

∣ µ̂ri
< µ̂ri−1 − κ

)

, (4)

peaks si :
(

µ̂si+1 < µ̂si
− κ

∣

∣

∣ µ̂si
> µ̂si−1 + κ

)

.

To better understand the meaning of (4), one can rewrite the inequalities in terms of

(µ̂t − µ̂t−1). With respect to detection rules defined on first and second differences,

the advantage of (4) is to emphasize the role of the coefficient κ > 0, which can

hinder false alarms.

2.2 Time-varying parameters

As for smoothing, there is a wide literature on time-varying parameter models (e.g.

Grillenzoni 1996 or Ljung 1999). In this paper we consider two semi-parametric

schemes which include trend and autoregressive components

Xt = αt + βt t + e1t , e1t ∼ IN(0, σ2
1t), (5)

Xt = φt Xt−1 + e2t , e2t ∼ IN(0, σ2
2t), (6)

their adaptivity can provide residuals which are nearly independent (IN).

In the models (5)-(6), the coefficients {αt, βt, φt , σt} are deterministic sequences

which wander about finite time-average values | ᾱ, β̄, φ̄, σ̄ | < ∞, where ᾱ = limT→∞

( T−1 ∑T
t=1 αt ), etc.. This assumption is called ”quasi stationarity” (see Ljung 1999)

and allows suitable statistical properties to parameter estimates. If the average

values are β̄ = 0, φ̄ = 1, then the joint model for Xt is the random-walk plus drift

scheme, which is widely used in tests for unit-root (e.g. Fuller 1996).

As for µt in the model (1), the parameters of (5)-(6) are non-stochastic, but not

necessarily smooth. Therefore, their fluctuations can determine complex patterns in

Xt, such as positive and negative trends, local stationarity, structural breaks, and so

on. The relationship between varying parameters and turning points derives from
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the fact that βt and φt determine the local slope of Xt. Thus, if βt > 0 or φt > 1

we have a positive local trend, whereas a negative trend occurs in the opposite case.

This can be checked by investigating the function µt = E(Xt) of the models (5) and

(6), with fixed initial condition X0 = c0 (a constant)

µ1t = αt + βt t , µ2t =
t

∏

i=1

φi c0.

In the continuous time, differentiation of µ1t gives µ′

1t = βt ; hence, peaks and

troughs occur in correspondence of βt = 0. For the model (6), by assuming the step

function φt = φ1 > 1 for t < τ , and φt = φ2 < 1 elsewhere, the trend function

becomes µ2t = c0 φτ−1
1 φt−τ

2 , which has a peak at t = τ . Thus, turning points of Xt

tend to occur where the parameters (βt, φt) cross the thresholds (0, 1) respectively.

It follows that detection statistics for the peaks and troughs of Xt can be provided

by recursive estimates of the regression parameters, namely (β̂t, φ̂t).

Consistently with the semiparametric nature of models (5)-(6), we use the

EWLS algorithm. By defining the vectors z′t = [ 1, t ] and θ
′

t = [ αt , βt ], the model

(5) can be rewritten as Xt = θ
′

t zt + et, and the recursive estimator becomes

êt = Xt − θ̂
′

t−1zt , t = 1, 2 . . .

Rt = λRt−1 + zt z
′

t , R0 = C1,

θ̂t = θ̂t−1 + R−1
t zt êt , θ̂0 = c2, (7)

σ̂2
t = λ σ̂2

t−1 + (1 − λ) ê2
t , σ̂2

0 = c3,

(see Grillenzoni 1996), where λ ∈ (0, 1], êt are prediction errors, Rt is the sum of

squared regressors and C1, c2, c3 are fixed initial conditions. The algorithm (7) can

also be applied to the model (6) by letting zt = Xt−1 and θt = φt.

The initial values θ̂0,R0, σ̂
2
0 of (7) can be estimated with ordinary least squares

(OLS) on an initial stretch of data, and are asymptotically negligible when λ < 1.

The properties of EWLS have been well investigated in the constant parameter

case, where the consistency holds as λ → 1 (see Ljung 1999). For time-varying

parameters, λ should be designed according the rate of non-stationarity, as defined

by prediction errors and the function QT =
∑

t ê
2
t (λ). Minimizing QT (λ) is similar

to the cross-validation selection of the bandwidth in kernel smoothers.
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As stated above, the sequential detection of turning points of Xt can be based

on the recursive estimates (7). Specifically, if β̂t or φ̂t cross their thresholds 0,

1 at time t = τ , then a turning point is detected at τ . Since the estimates are

affected by sampling errors, or may cross the thresholds too frequently, tolerance

limits 0 ≤ (κ1, κ2) < ∞ must be introduced to reduce the number of weak and false

alarms. As in (4) the detection rule becomes

troughs ri :
(

β̂ri
> κ1

∣

∣

∣ β̂ri−1 < κ1

)

or
(

φ̂ri
> 1 + κ2

∣

∣

∣ φ̂ri−1 < 1 + κ2

)

, (8)

peaks si :
(

β̂si
< −κ1

∣

∣

∣ β̂si−1 > −κ1

)

or
(

φ̂si
< 1 − κ2

∣

∣

∣ φ̂si−1 > 1 − κ2

)

,

where we have omitted 0 in the first rule and κ1 6= κ2 for the different scale of βt

and φt. It is worth noting that the strategy (8) deals with the separate estimation

of models (5) and (6), so as to avoid interactions between β̂t and φ̂t that would keep

them away from the thresholds 0, 1. The main advantage of (8) with respect to (4)

is timeliness, because the detection in (4) is delayed at least by one lag.

2.3 Change-point statistics

Monitoring methods based on control statistics arise in change-point problems,

where a process Xt is subject to a shift δ in the mean µ at an unknown time t = τ .

Extending this approach to the model (1), the mean µt becomes a step-function

with possible ramps, and yt is the innovation sequence (e.g. Lai 2001)

Xt = µt + yt , µτ = µτ−1 + δ,

µ1 ≤ µ2 ≤ . . . ≤ µτ−1 < µτ ≥ µτ+1 ≥ . . . ≥ µt .

The typical detection strategy is to use test statistics concerned with mean shifts,

such as the likelihood ratio (LR). This requires knowledge of the density f(Xt),

before and after the change point τ . Under Gaussianity, the optimal LR tends

to be equivalent to CUSUM statistics, which are linear functions of the data (e.g.

Luo et al. 2012). A serious problem is the autocorrelation of the series, which

reduces the power of tests (see Mei 2006). A common remedy is to fit Xt with an

autoregressive model and then monitoring its residuals; this coincides with adaptive

control techniques used in industrial production (see Box et al. 2009).
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As an example, we consider the Shiryaev-Robert (SR) statistic which is based on

the sequential LR test. If f0(Xt) and fδ(Xt) are pre-shift and post-shift distributions,

the test statistic and its stopping rule are given by

Rt(δ) =
t

∑

j=1

t
∏

i=j

fδ(Xi)

f0(Xi)
, τ̂ = min{ t : Rt(δ) > κ }.

Under mild conditions, this can be extended to dependent series by using conditional

densities. In particular, assuming that distributions are continuous and their shape

do not depend on the change point, the recursive SR statistic becomes

Rt = (1 + Rt−1) Λt , with Λt =
fδ( Xt |Xt−1, Xt−2 . . .)

f0( Xt |Xt−1, Xt−2 . . .)
.

Further, assuming Gaussian densities with pre-shift mean µ = 0, it can be seen that

the SR statistic becomes a function of prediction errors

et = Xt − E( Xt |Xt−1, Xt−2 . . . ),

Rt = (1 + Rt−1) exp (δ et/σ − δ2/2),

which is linearizable with logarithm. Apart from the a-priori selection of the shift

δ, a drawback of LR tests is that they assume only positive values; therefore, they

do not enable to identify the type (peak or trough) of a change.

Linear statistics of et do not have these problems since they preserve the sign of

errors. It can be easily seen that positive errors occur in correspondence of troughs,

whereas negative et take place after a peak. Since turning points generate patches of

errors, CUSUM and EWMA statistics of et are more robust indicators. Prediction

errors can be estimated efficiently by merging the models (5) and (6) as

Xt = αt + βt t + φt Xt−1 + et , et ∼ IN(0, σ2
t ), (9)

and using the algorithm (7) with z′t = [ 1, t, Xt−1]. To reduce false alarms caused

by the heteroskedasticity, the EWMA statistic must use standardized errors as

Ẑt = λ Ẑt−1 + (1 − λ) (êt/σ̂t−1) , Ẑ0 = 0. (10)

This expression can be inserted in the algorithm (7), by using the same smoothing

coefficient λ. Given the relationship between prediction errors and turning points,
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the detection rule based on the tolerance limit κ > 0 becomes

troughs ri :
(

Ẑri
> +κ

∣

∣

∣ Ẑri−1 < +κ
)

, (11)

peaks si :
(

Ẑsi
< −κ

∣

∣

∣ Ẑsi−1 > −κ
)

.

As an alternative to (10) one can use the Shewhart statistic Ẑ1
t = êt/σ̂t−1,

which monitors individual errors. Vander Wiel (1996) showed that in random-walk

processes it has the same signaling performance as optimal statistics. In particular,

the average run length (ARL), which measures the expected number of periods

between the change point and the alarm signal: E( τ̂−τ | δ ), is similar for Shewhart,

CUSUM, EWMA and LR, for any value of the shift δ 6= 0. In summary, for non-

stationary series the crucial issue is not the type of monitoring statistic, rather the

kind of model used to generate prediction errors. Trend models as (1) are rigid and

ignore autocorrelation; instead, regression models as (9) are adaptive.

3 Design of tuning coefficients

In the previous sections we have discussed various approaches to detection. Their

statistics and decision rules contain the coefficients λ and κ that must be properly

designed. Traditional selection follows operative criteria; for example, in the ex-

ponential smoother (3), λ has to optimize the forecasting performance, and in the

recursive estimator (7), λ must minimize
∑

t ê
2
t . In LR-SR statistics, the mean shift

δ is selected on the basis of the normal wandering of Xt, and the threshold κ has

to attain the desired ARL level. Typically, δ ∈ [.25 σe; 1.5 σe] (hence δ ≈ 1 if et

are standardized) and ARL(κ | δ) is computed with simulations (see Chin and Apley

2008). It is difficult, however, to extend this approach to κ of the schemes (4),(8)

and (11) because the path of the trend function µt and of its turning points are

complex. In the following, we present a data-driven approach to the joint selection

of λ and κ which is adopted in econometrics (see Grillenzoni 2012).

3.1 Maximum amplitude selection

As in Section 2.1, we assume that the function µt has n pairs of troughs/peaks

9



{ ri, si} in the interval [1, T ], where µri
< µsi

and ri < si for i = 1, 2 . . . n. We also

assume that the realizations of Xt have turning points which are close to { ri, si}.

This means that the variance of the detrended process yt is small compared to that

of Xt. We define the total f luctuation of Xt in the interval [1, T ] as the sum of the

differences in height between subsequent peaks and troughs, that is

DT (r, s) =
n

∑

i=1

(

Xsi
− Xri

)

, n ≪ T/2. (12)

Its expected value is E(DT ) =
∑

i (µsi
− µri

) > 0, and is maximum on [1,T ].

Let r̂i and ŝi be the turning points identified with the statistics µ̂t, β̂t and Ẑt

and the decision rules (4),(8) and (11). They depend on the design coefficients λ

and κ by maximizing the function DT , that is

(λ̂, κ̂) = arg max
λ,κ

DT

[

r̂(λ, κ), ŝ(λ, κ)
]

. (13)

In econometrics, this approach corresponds to a strategy of maximum profitability in

a sequence of buy and sell actions. In electrical engineering it provides the maximum

gain to an amplified signal. The important fact is that (13) is automatic and allows

for timely, hence minimum delay, detection of turning points.

The solution (13) may yield an excessive number of turning points, i.e. a value

of n much greater than that expected from the visual analysis of the series. Thus,

it may be preferable to optimize the mean value DT /n, or the penalized function

PT (λ, κ) =
[

DT (λ, κ) − γ n
]

, where 0 ≤ γ < ∞ is selected so that the resulting n̂ is

nearly equal to the number n∗ of peaks of Xt observed on [1, T ]. Since the choice

of γ is not simple, one can build the objective function only on the first n∗ < n

greatest differences Di = (Ysi
− Yri

), and maximize the partial sum

D∗

T (λ, κ) =
n∗
∑

i=1

D[ i ](λ, κ) , D[ i ] ≥ D[ i+1 ], (14)

where n∗ is the number peaks (troughs) observed, or selected, on [1, T ].

3.2 Computational aspects

The functions DT and D∗

T may be non-smooth and may have several local maxima.

It is possible to identify the global optima by exploring their surface on a grid of
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values for (λ , κ); subsequently, numerical optimization can refine the solution. For

testing purposes, the available data-set is split into two segments T = T1+T2, where

T1 is the in-sample (or estimation) period and T2 is the out-of-sample (or forecasting)

period. We carry out the selection (13) only on the first T1 observations; next we

compute the measure DT2
on the remaining T2 data.

Algorithms (2),(7) and (10) are recursive and require initial values; these in-

fluence the performance of the methods at the beginning. We solve this problem

by assigning reasonable values to Ŝ0, µ̂0; θ̂0,R0, σ̂
2
0 and Ẑ0, and by adjusting them

on an initial stretch of data. Specifically, we add at the beginning of the series, a

sub-sample of size N ≪ T1, just rescaled to the level of the first observation:

X∗

−j = XN−j −
(

XN − X1

)

, j = 1, 2 . . .N ≪ T1 . (15)

The size of N is not very important for (2), but for (7) it should be large enough.

We can summarize the detection strategy with the following steps:

1) Define the interval T1 ≪ T and the grid of values {λi}
n1

i=1 and {κj}
n2

j=1;

2) Run the algorithms of µ̂t, β̂t, φ̂t, êt and Ẑt for every λi, i = 1, 2, ..., n1;

3) Apply the detection rules (4),(8) and (11) for every κj , j = 1, 2, ..., n2;

4) Sort the sequences of detected points {r̂k}, {ŝh}, to obtain {r̂l < ŝl};

5) Compute the function DT1
(λi, κj) and find its maximum (λ0, κ0);

6) Improve the values of (λ0, κ0) with numerical algorithms on DT1
;

7) Evaluate the out-of-sample statistic DT2
(λ̂0, κ̂0), on T2 = T − T1.

As regards Step 4, it should be noted that in the presence of two or more

consecutive troughs (peaks), only the first one is retained for reasons of timeliness.

However, the criterion maxDT1
will finally select the most effective.

4 Applications to real and simulated data

4.1 Barometric pressure

The first case study deals with the barometric pressure, a key factor in the behavior

of meteorological phenomena. It influences temperature, humidity, wind speed and

rainfall; hence, it also determines the quality of air in urban areas. The process has
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a cyclical pattern with stochastic amplitude and period.

Data come from the station of Chicago Meigs (www.soils.wisc.edu) consist of

hourly averages for the period Jan. 1 - Feb. 11, 2010, a total of T=1000 time points.

Visual inspection of the series shows about 12 peaks on the whole period, see Fig.

1c. Letting T1=700 the in-sample period, Fig. 1a and Fig. 1b show the functions

(13) and (14) with n∗

1=9, for the method (4) based on DES. Since the optimum

point of Fig. 1a yields a large number of turning points (n=63), we consider the

maximum of Fig. 1b, which is (λ, κ)=(0.754,0.0096) and yields n1=8 and DT1
=83.

The implied estimates µ̂t and the peaks are displayed in Fig. 1c. The performance

on T1 and T2 is relatively good, although two main peaks are missed.

Applying the TVP rule (8) to the AR model (6) and the function (14) with

n∗=9, we obtain (λ, κ)=(0.695,0.00028) which yield n1=8 and DT1
=89. Fig. 2

shows recursive estimates φ̂t and detected points; the results are significantly better

than those in Fig. 1c. The performance of the regression model (5) is slightly

inferior, especially in the out-of-sample period, and is not reported here.
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Fig. 1 Application of the method (4) to barometric pressure data: (a),(b) Surfaces

of (12) and (14) with n∗=9, evaluated on the sub-sample T1=700. (c) Series Xt

(solid blue), trend estimate µ̂t (black), troughs ri (△ green) and peaks si (▽ red).
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Fig. 2 Application of the method (8) to the hourly barometric pressure: (a) Series

Xt (solid blue), detected troughs ri (△ green) and peaks si (▽ red); (b) Recursive

estimates φ̂t (solid) and alarm limits 1±κ (dashed).

Finally, we apply the method (11) based on EWMA statistics of prediction

errors. The best model for generating white-noise êt is the autoregression (6). Inde-

pendence is a necessary condition for unbiased detection (e.g. Mei 2006). Selection

with criterion (14) provides (λ, κ)=(0.825,0.494), n1=9 and DT1
=91. As the es-

timates are not very accurate at the beginning, the detection of the first peak is

wrong, but the out-of-sample performance is very good.

Table 1 summarizes main numerical results of the methods discussed so far. We

can state that the best method on T1 is TVP, as it detects the right number of peaks

n1=8, whereas EWMA of prediction errors is the best on T2.

Table 1 Results of detection methods applied to barometric data: λ, κ are smooth-

ing and alarm coefficients; T1=700, T2=300 are in- and out-of-sample periods; DT

is the sum of level difference between peaks and troughs; n is the number of peaks.

Method Model Stat. Rule λ̂ κ̂ DT1
n1 DT2

n2

DES (2) µ̂t (4) 0.754 0.0096 83 8 27 3

TVP (6) φ̂t (8) 0.695 0.00028 89 8 30 4

EWMA (6) Ẑt (11) 0.825 0.494 91 9 34 4
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4.2 Sunspot number

Sunspot number is the daily count of dark spots on the sun surface which is visible

from earth. Sunspots are caused by intense magnetic activity which locally inhibits

convection and reduces temperature; hence, their number is an indicator of the solar

activity. The series has been collected for about 300 years; despite its randomness,

it shows a cyclical pattern with an average period of about 10.5 years. We consider

the monthly average from Jan. 1924 to Dec. 2010, a total of T=1032 observations

(http://sidc.oma.be), and compare the detection methods.

Performance of the smoother (4) is poor as the troughs and peaks are identified

with considerable delay. We improve the method with the so-called oscillation

approach used in the technical analysis of finance. It consists of monitoring crossings

of one-sided moving averages of different size: if a short-term average exceeds the

long-term one, then a trough is detected. In this paper, we just compare simple and

double smoothers (Ŝt, µ̂t) of the system (2), by following the rule

troughs ri : Ŝri
> µ̂ri

+ κ , (16)

peaks si : Ŝsi
< µ̂si

− κ ,

where κ is a tolerance value. Functions (13) and (14) with n∗

1=5, provide similar

results for the selection of the coefficients λ and κ using the first T1=600 observations.

Numerical results are reported in Table 2 and graphs are shown in Fig. 3.
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Fig. 3 Application of the method (16) to the monthly sunspot number: Data Xt

(blue), estimates Ŝt (black thin), µ̂t (black bold), detected troughs ri (△ green) and

peaks si (▽ red).
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As regards time-varying parameters, the method based on the model (6) cannot

be applied because Xt does not contain a unit-root; hence φ̂t cannot be compared

with the threshold 1. Instead, the regression model (5) with the rule (8) has provided

results which improve those of (16); see the second row of Table 2.

In applying the method (11), we face two problems: the first is the choice of

the model for Xt, the second is the inertia of the EWMA statistic. Modeling the

sunspot series is a challenging issue; however, we have checked that the mixed model

(9) provides acceptable results. Since its innovations are mildly autocorrelated, we

solve the loss of efficiency by resetting the statistic to zero whenever it exceeds the

alarm limits. Using the indicator function I(·) the modified EWMA statistic is

Z̃t = λ Z̃t−1 I
(

|Z̃t−1| < κ
)

+ (1 − λ) êt/σ̂t−1 . (17)

The application of (17) to the sunspot series provides the results in Fig. 4 and Table

2. They significantly outperform the others in terms of the statistics DT .
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Fig. 4 Application of the method (17)-(11) to monthly sunspot numbers: (a) Data

Xt (solid blue) and detected troughs ri (△ green) and peaks si (▽ red); (b) Statistics

(17) Z̃t (solid) and alarm bands ±κ (dashed).
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Table 2 Results of detection methods applied to the sunspot data. Symbols are

explained in the caption of Table 1, except for T1=600 and T2=432.

Method Model Stat. Rule λ̂ κ̂ DT1
n1 DT2

n2

DES (2) Ŝt − µ̂t (16) 0.85 4.1 316 6 134 4

TVP (5) β̂t (8) 0.855 0.63 367 5 158 4

EWMA (9) Z̃t (11) 0.93 0.195 421 5 271 4

4.3 Cosmic rays

Cosmic rays are energy charged subatomic particles originating from the outer space.

As atomic radiations, they are dangerous for life forms, but fortunately, they are

largely deflected by the magnetic field of earth. Their flux to the earth surface also

depends on the solar wind, i.e. the magnetized plasma generated by the sun, which

decelerates the incoming particles. As for sunspots, the intensity of solar wind has

an average period of 10-11 years; hence, cosmic rays enjoy the inverse cycle.
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Fig. 5 Application of the methods (4) and (16) to cosmic ray data: (a) Series Xt

(solid blue), estimates µ̂t (black) and detected troughs ri (△ green) and peaks si

(▽ red); (b) Series Xt (blue), estimates Ŝt (black thin), µ̂t (black bold).

We consider the monthly average collected in Moscow from Jan. 1958 to Dec.

2010, a total of T=636 observations (www.climate4you.com). In applying detection
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methods, the training period for computing the functions (13) and (14) with n∗

1=3,

is defined as T1=372. Fig. 5 shows the results provided by the smoothing methods

(4) and (16); apart from a couple of false alarms they are acceptable. Results of the

regression methods (8) and (11) are slightly inferior and are summarized in Table

3. The bad out-of-sample performance of EWMA may be caused by outliers and

jumps which are present in the series Xt and strongly affect Ẑt when λ < 0.9.

Table 3 Results of detection methods applied to cosmic rays data. Symbols are

explained in the caption of Table 1, except for T1=372 and T2=264.

Method Model Stat. Rule λ̂ κ̂ DT1
n1 DT2

n2

DES (2) µ̂t (4) 0.872 0.261 1841 3 1203 3

DES (2) Ŝt − µ̂t (16) 0.890 6.41 1425 4 1541 2

TVP (5) β̂t (8) 0.880 2.70 1405 4 1367 2

TVP (6) φ̂t (8) 0.913 0.0022 1165 3 1196 3

EWMA (9) Z̃t (11) 0.873 0.321 1404 3 845 3

4.4 Ocean temperature

El Niño southern oscillation (ENSO) is the cyclical behavior of sea surface temper-

ature in the south-tropical part of eastern Pacific Ocean. Given the size of the area,

its anomalies are held responsible for extreme climate events around the world, in-

cluding local droughts and floods. ENSO period and amplitude are also indicators

of global climate changes (www.esrl.noaa.gov/psd/enso/mei).

We consider the monthly variation of temperature from Jan. 1951 to Dec.

2010, a total of T=720 observations. Training period is defined as T1=450; given

the numerous turning points the best criterion for selecting the coefficients is the

function (14) with n∗

1=11. The best detection method is EWMA of the prediction

errors of model (9); the results are displayed in Fig. 6 and Table 4.
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Fig. 6 Application of the method (11) to the ocean temperature variation: (a)

Series Xt (solid blue) and detected troughs ri (△ green) and peaks si (▽ red); (b)

Statistics (11) Ẑt (solid) and alarm bands ±κ (dashed).

Table 4 Results of detection methods for the ocean temperature variation. Symbols

are explained in the caption of Table 1, except for T1=450 and T2=270.

Method Model Stat. Rule λ̂ κ̂ DT1
n1 DT2

n2

DES (2) µ̂t (4) 0.537 0.0091 12.2 13 7.1 6

TVP (5) β̂t (8) 0.119 0.203 11.1 10 7.2 7

TVP (6) φ̂t (8) 0.088 0.069 13.2 13 8.1 9

EWMA (9) Ẑt (11) 0.776 0.478 17.8 13 9.7 10

4.5 Simulation experiments

In-depth evaluation of the detection methods requires simulation experiments. We

consider a process with a deterministic trend-cycle which is blurred by a random

walk; namely Xt = µt + ωt + yt, where µt = 1 + 0.01 t + 0.0000075 t2 is the trend,

ωt = 1 + sin(t/35) is the cycle, and yt = yt−1 + at with at ∼ IN(0, 0.05) Gaussian.

We generate N=500 realizations of length T=1000 (an example is given in Fig. 7),

and we apply the procedure of Section 3.2 with T1=600 and T2=400.

18



0 100 200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

Fig. 7 Typical realization of the simulated process: trend µt (dotted), cycle ωt

(dashed), series Xt (solid).

Table 5 Results of detection methods applied to simulated data. The statistics are

average values of the estimates over N=500 replications; T1=600, T2=400 and d is

the mean detection delay over the turning points of µt.

Method Model Stat. Rule λ̄ κ̄ D̄T1
n̄1 d̄1 D̄T2

n̄2 d̄2

DES (2) µ̂t (4) 0.846 0.0005 5.21 2.02 40.6 1.27 1.42 42.1

DES (2) Ŝt − µ̂t (16) 0.821 0.0286 5.87 2.81 16.2 2.86 2.38 16.4

TVP (5) β̂t (8) 0.785 0.0095 5.98 2.85 14.3 2.98 2.44 14.7

TVP (6) φ̂t (8) 0.833 0.0114 5.32 3.10 18.2 2.11 2.02 26.0

EWMA (9) Ẑt (11) 0.926 0.243 5.87 3.09 29.3 2.79 1.98 31.5

The coefficients (λ, κ) are selected with the criterion function DT1
/n1 because it

provides the best performance overall. Average values of the estimates are reported

in Table 5. It includes the mean detection delay d = (2 n)−1 ∑n
i=1 [(r̂i−ri)+(ŝi−si)],

where ri and si are the turning points of (µt + ωt). On the basis of these results,

the best detection method is (8), based on the TVP model (5), because it has max

D and min d. The worst one is DES (4) in view of the biggest values of d.

5 Conclusions

In this article we have compared detection methods based on exponential weighting

of observations, and applied them to various environmental data sets, such as mete-
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orological, astronomical, climatological and ecological. Suitable evaluation approach

is found to be the one based on out-of-sample statistics n2 and DT2
; i.e. the number

of detected peaks and the level difference between paired peaks and troughs. The

target value for n2 is the number of peaks observable in the period T2; however,

in time series with stochastic cycles, definition and count of turning points may be

difficult (see Fig. 6a). Indicator DT2
is preferable because it deals with the location

of the points and, therefore, with the unbiasedness of the methods.

Evaluation of the statistics DT2
in Tables 1-5 does not allow one to conclude

about the overall best method. EWMA approach outperforms the others in 3 cases,

and could be further improved by increasing the order of the model (9), e.g. by

including terms as Xt−k, k > 1. An important contribution to the performance of

EWMA is given by the adaptive estimator (7); especially for the treatment of the

heteroscedasticity with êt/σ̂t−1. In our framework, EWMA solution is intrinsically

related to TVP methods, which have a reasonably good performance.

The attempt to improve the results by combining various methods may be inter-

esting, but difficult to follow. In principle, the different sequences {r̂i, ŝi}j (where j

is the index of methods) could be pooled and ordered; however, this surely increases

the number of detections n, but may not improve the statistics DT . Alternatively,

one may simply use the best methods in parallel, i.e. take a decision only if it

is signaled by at least two methods. This approach, however, tends to drastically

reduce the number of detections.

The fundamental step in the proposed methodology is the selection of smoothing

and alarm coefficients. This is carried out by maximizing DT1
(λ, κ) on the initial

period T1. An important aspect which needs further investigation is the stability of

the selected coefficients in the subsequent period T2. In situations of fast evolution

and structural changes (such as those induced by volcano eruptions or wildfires),

the coefficients should be updated as and when new observations become available.

At the same time, old data should be discarded from the estimation sample and

suitable design of T1 must be addressed.
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