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Adaptive Tests for Changing Unit Roots in
Nonstationary Time Series

Carlo GRILLENZONI

- This article considers tests for unit roots in time series models with varying param-
eters. The null hypothesis is that roots are unity against an alternative where they change
over time, Tests statistics are based on recursive least squares (RLS) estimates having
exponentially weighted (EW) observations. This method belongs to the class of nonpara-
metric estimators and allows interesting computational and graphical aspects. Asymptotic
properties are investigated as in kernel estimation, by allowing smoothing coefficients
tending to zero. Under the null, we find that test statistics approach the distributions tab-
ulated by Dickey and Fuller, Applications to real and simulated data show the validity
of the method.
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1. INTRODUCTION

Time series are usually represented by polynomial models whose stability properties

depend on the location of their roots (see Box and Jenkins 1976). So-called unit roots lie
on the unit circle of the complex plane—that is, have modulus one. Their presence has
‘important consequences on the behavior and the inference of the models. In particular,
unit roots imply instability and can generate persistent components of the real world,
such as stochastic trends. On the other hand, they affect the asymptotic properties of the
estimates of both parameters and predictors.
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Inference on unit-root processes is an important topic of mathematical statistics and
has a long history. Seminal contributions are those of White (1959), Rao (1978), Dickey
and Fuller (1979), and Phillips and Perron (1988) (see Hamilton 1994 for a review).
Main findings are that least squares estimates have a faster convergence rate, but have a
nonstandard distribution when models contain unit roots. Such distribution was derived
in analytical form by Rao (1978), but can also be expressed as the ratio of functionals
on Brownian motion. This feature is useful for carrying out simulations.

Testing for the presence of unit roots in a time series is useful both for identifying
the nature of the process and for applying the model building methodology of Box and
Jenkins (1976). Nowadays, Dickey-Fuller (DF) tests are the most popular tools used in
this field. They are based on nonstandard distributions which have been simulated and
tabulated by the two authors (see Fuller 1996). Apart from nonstandard aspects, DF tests
resemble classical procedures and can be easily extended.

Except for the recent work by Granger and Swanson (1996), small attention has been
devoted to the possible time-variability of unit roots. This aspect is important because
regression parameters may change over time (see Grillenzoni 1994); moreover, it may
contrast the tendency of unstable models to diverge. To be specific, real time series
usually contain trends, but we cannot expect them to grow indefinitely over time. Now,
roots wandering on the unit circle can stabilize the level of a process because they create
changing points where the slope of the trends inverts.

Granger and Swanson (1996) assumed that roots change stochastically around unity
and define a nonlinear model for their fluctuations. They showed that DF tests can dis-
tinguish between constant and stochastic unit roots, but the power decreases. This article
assumes that roots change smoothly but in an unknown manner. In this case, a proper
nonparametric estimator is recursive least squares (RLS) with discounted observations.
I define recursive statistics for testing for unit roots and study their distribution as in
kernel estimation. The method actually provides sequential DF tests which can also be
used for checking the constancy over time of the roots.

The plan of the work is as follows: Section 2 provides background material on
recursive estimation and tests for unit roots. Section 3 defines recursive DF tests and
studies their distribution analytically and by simulations. Section 4 checks the validity
of the method with applications to real and simulated data.

2. MODELS AND METHODS

Using the Box-Jenkins symbols, the basic representation we consider is an autore-
gressive (AR) process whose parameter (root) wanders on the unit circle:

Zy = Gy +as
ag ~ iid(O,az) Zo—ao

¢ = lim n~ |E &) =1 2.1

n—oo
Specifically, the sequence {¢;} has time-average ¢ with unit modulus and the input {a,}

is a sequence of independent identically distributed (iid) variates having finite variance.
In this way, (2.1) can be classified as an evolving unstable AR(1) process.
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Figure 1. A realization of the process (2.1) with sinusoidal parameters.

On average, the process (2,1) is a random walk; however, fluctuations of the root
inside and outside the unit circle determine more complex behavior, such as local stability
as well as local trends. These features crucially depend on the path of the root, on which
we do not make specific assumptions. In particular, ¢, may be stochastic or deterministic,
- linear or ‘nonlinear, white noise or random walk, smoothly or suddenly changing. The
sole restriction we establish concerns the average trajectory ¢.

An Example. Figure 1 shows a realization of the process (2.1) with the designs
as ~ IN(0,1), Zyg = 0 and ¢, = 1—.55in(¢/10.6), where t = 1...500. This specification
is such that min(¢;) = .95 and max(¢;) = 1.05, with a period of length 66.6. We may
see that fluctuations of the parameter on the unit circle considerably influence the level
of the series. The transient in Z; depends on the fact that unstable processes are sensitive
to the initial condition. This behavior may be reduced by choosing Zy > 0.

Inference on the model (2.1) in its general form is difficult, especially when pa-
rameters are stochastic. If {¢;} is an AR process itself, then the Kalman filter (KF) can
estimate its conditional mean E(¢;|Z;_1, Z;—, ...). When {¢; } has an unknown dynamic,
however, a nonparametric estimator must be defined. Consistently with the approach of
local regression (see Hastie and Loader 1993 or Fan and Gijbels 1996), we may consider
the least squares algorithm with exponentially weighted (EW) observations

Z::z N~ Z 1 Z;
Yoamy N1 22

d:(\) = , 0<A<]l, (2.2)
where A is the discounting rate. When ¢; = ¢ constant, it is easy to show that estimator
(2.2) minimizes the weighted loss function Q:(¢) = Z§=z A~Y(Z — $Ziy)2

The recursive implementation of (2.2) allows fast calculation and is more transparent
in showing its ability to estimate the sequence {¢;}. As in Grillenzoni (1994) we have

R, = AR+ th_l
& = Zi— 11241
¢ = G1+R7'Ziq

& = Zi—¢iZs
& = Aoj +(1-2)(a:a), 23)
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where R; is the weighted sum of squared regressors, 4. is the prediction error, d; is the
recursive residual, and 87 is an estimator of the residual variance o2.

Algorithm (2.3) is algebraically equivalent to (2.2); however, since ¢t > 2 it needs the
starting values (R, é1, &%) > 0. The adaptive ability of (2.3) depends on these values,
and especially on the factor A. Its action can be appreciated either by the fact that it gives
more weight to recent observations or by preventing R, ! 5 0in (2.3). Such a coefficient
tends, therefore, to have the same role as the bandwidth in kernel type estimators. In
the Appendix, Section A.1, we shed light on this point by defining the correspondence
between (2.2)—(2.3) and classical nonparametric estimators.

The Problem. On the basis of the algorithm (2.3), this article aims to derive recursive
tests for unit roots. We are also interested in using these methods for testing the constancy
over time of the parameters of model (2.1). In both cases the system of hypotheses is
given by

Ho: ¢: =1 versus Hy: ¢ # 1. (2.4)

Under the null, the model (2.1) becomes a true random walk and the Dickey—~Fuller tests
could be used. However, the DF statistics must be adapted to the new alternative; in
particular, they must be made sensitive to parameter variations.

Typically, DF tests are based on the statistic S, = n(¢n — 1), where @y, is the OLS
estimator, n is the sample size, and 1 is the null. The hypothesis Hy is rejected in favor
of Hy: ¢ # 1 if S, lies outside critical values tabulated by Fuller (1996, p. 640). Now,
S, can be adapted to the system (2.4), by replacing &, with ¢:()\) and proceeding for
each ¢ > 2. However, two technical questions arise from this approach: (1) What is
the quantity to be used in place of n?; and (2) What is the distribution of the resulting
statistic S3(A)? The answers will be provided in the next section. In the meantime, we
note that the implicit sample size of (2.2)~(2.3) is given by (3°5_, A*™%) = 1/(1 - A).

3. ADAPTIVE DICKEY-FULLER TESTS

As in the classical analysis (e.g., White 1958 or Hamilton 1994, p. 475) we pre-
liminarily define bounding functions for the numerator and the denominator of (2.2).
Under the null (2.4), it is well known that Z; = Op(\/l_t), because Z; = Z:=1 a; and
var(Z;) = t o2. Therefore, using the asymptotic sample size 1/(1—X), it is easy to prove
(see Appendix A.2)

Z Atz o, (_\__/_f__)
‘= 1-A
YNTIZE, = 0 1 ﬁ )

t=2 ( A

n
Y Atz e = op< = ) 3.1)

te=2 -

B

>
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Figure 2. Kernel density estimates of OLS (- - -) and WLS (—) statistics of random walks: (a)n=3/2 "0 Z;
(-- - V2= A) 300 APTEZ (—); (B) Snf- - <), Sn(X) (—).

Statistic 1. On the basis of results (3.1), the adaptive DF test statistic becomes

s = (3 -1)

— [(1 '; A) Zt: }\t—i Ziz—l

i=2

-1

t
Y 1\/; A Z M= Za,.
=2

In fact, the fixed sequence +/t/(1 — \) that replaces n, arises from the product of the
bounding terms of numerator and denominator of [é&,(}\) — 1] under the null.

The asymptotic analysis of (3.2) with A < 1 is difficult because it does not converge
to a well defined random variable; therefore, we need to let'A — 1. On the other hand,
the behavior of (3.2) by running A — 1 before ¢ — oo is trivial because the WLS
estimator converges in probability to the OLS one. As in Grillenzoni (1996) this may be
avoided by using a double limit operator lim_,; lim;_,c f(t, A) in which the order is not
invertible and by running ¢, A at the same rate, namely limy 1 lim;—,c0 [t1-X)] =1
This approach resembles the analysis of kernel estimators (see Hérdle 1991), and can be
accomplished by using A = (1 — 1/¢).

Now, under the null and the stated conditions, we can prove that (3.2) converges to
the same limiting distribution as S, = n($, — 1). This does not hold for its numerator
and denominator taken separately, however. In particular, the asymptotic distribution is
the ratio of two random variables (which may be expressed as functionals on Wiener
process W (-)) whose variances are half of those of the classical analysis. From Appendix
A4, ast — 00, A — 1 and t(1 — A\) - 1, we have .

Vi L, (03/V2) [ W(s) W (s)
VI-2X (03/v2) [oW?(s)ds

By deleting (62/+/2), one obtains the distribution introduced by White (1959) and tab-

ulated by Dickey and Fuller (see Fuller 1996, p. 641), hence denoted as DF(1).
Simulation experiments were conducted to check the validity of the results in (3.3).

Figure 2(a) compares the kemel density estimates of n=%/2 3°7_, Z; and n~V/2(1 —

3.2)

[0 -1] (3)
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A) Yopey At Z,, with A = (1~ 1/n). Figure 2(b) repeats the exercise for the statistics
S, and (3.2). In both cases the designs in (2.1) were a; ~ IN(0,1), ¢; = 1, Zo = aq;
the number of replications was N = 200 and the sample size was n = 100.

One may note that only the variances in Figure 2(a) are different; in particular, that
of OLS (.325) is nearly twice that of WLS (.164). Further experiments have also shown
that this conclusion may be extended to other kinds of statistics, such as n=23 1 | Z?
and n=!(1—-A) >_1, A"~ Z2. Finally, Figure 2(a) shows that bounded sums of random
walks are nearly normally distributed across the samples, whereas Figure 2(b) exhibits
the well known asymmetric profile of the DF(1) distribution.

Statistic 2. To avoid the problem of defining the “sample size” in (3.2), one may
consider the t-type statistic used in tests for significance, namely T}, = (¢, —1)/ §1\€(q3n).
From (2.3), the corresponding WLS statistic and its distribution are

=y Jo W(s)dW (s)
\/Rtatz[qst()\)—l] L [\/iof;p;z(s)d:]’/z’ (3.4)

ast — 00, A = 1 and ¢(1 — A) — 1 (see the Appendix, Section A.4, for the proof). We
note that (3.4) coincides with the asymptotic distribution of T;, [namely DF(2), because
it also was tabulated by Dickey and Fuller (see Fuller 1996, p. 642)] except for the
presence of the constant (1/2)'/4.

To implement sequential tests for unit roots which directly refer to the critical values
of the DF(2) distribution, one must modify the statistic in (3.4) as follows

L) = yRTZEVTFA [0 1]

1+ )12 :_ At-i 72 1/2 )
[EI—A; Zﬁz;-fa%m} [fa9-1]; G:3)

where @ = (dy@;) are defined in (2.3). Multiplying by (1 + A)!/* in (3.5) actuaily
inflates the sum of squared regressors R;, which is underestimated as a consequence of
the exponential weighting. The result is loosely related to the sampling variance of (2.3)
in the case of stationary series: Var(¢;) = 62 R;'/(1 + A), see Grillenzoni (1996) and
(3.6). However, a fundamental difference is in the power of (1 + ).

Simulation experiments were conducted to check the validity of results (3.4) and
(3.5). Under the same design conditions as Figure 2(a), Figure 3 compares the kernel
density estimates of the statistics T,(OLS) and T, (), obtained with A = (1—1/n). One
may see that distribution of (3.5) is very close to that of T,,; hence, the DF(2) tabulation
can be used for it.

Testing. From the results (3.2)-(3.5) one can develop sequential tests for unit roots
which have the same structure as those based on OLS estimates. In particular;

1. Foreacht =2,3... one rejects Hy: ¢, = 1 when Sy, T;()\) lie outside the critical

values of the DF distributions; and

2. if Hy is rejected for certain values of ¢ and accepted for others, then parameter

variability is also detected.
Some words of caution are necessary when using the above decision rules:
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Figure 3. Kernel density estimates of Tn-statistics: OLS (- - ), (3.5) (—), (3.4) (- - -).

1. Under the null, the quantity [cﬁt()\) — 1] converges in probability to zero as
t — oo and A — 1, but nothing can be said under the alternative (2.4), because
the sequence {¢;} has an unknown dynamic.

2. Results (3.3) and (3.4) are asymptotic ones, therefore the testing procedure holds
for values of ¢, \ sufficiently large. The problem may be reduced for T;()) by
using algorithm (2.3) and suitable design for the initial estimates R, & , &f.

3. From Figures 2(b) and 3, one may note that DF critical values are not symmetrical
around 0, therefore the power of the tests under H : ¢ > 1 is greater than that
under H; : ¢ < 1. In other words, it is easier to identify a local trend rather than
a local stability. This situation is dramatic for S¢(X).

4. As stated before, the method also serves as a test for the constancy of the root of
model (2.1), which is unity in time average. However, an F test on the reduction
of the sum Q,, = Et—z ), compared with that of the OLS estimator, is more
powerful for this purpose (see Grillenzoni 1994).

With respect to classical DF tests, the effect of the coefficient A\ < 1 is to reduce the

“sample size” of the LS estimator. Hence, under Hy we expect that statistics Sg, T3(A)
approach a steady-state value. However, owing to the sequence +/ t/(1 —A), the value
of S4()\) is increasing and leads to the rejection of the null. In order to stabilize its
behavior one may replace ¢ large with 1/(1 — \), the effective number of observations
of the estimator (2.3). This choice may, however, underestimate the test statistic.

An intermediate solution can be obtained from the dispersion of (2.2)—(2.3) in the

case of stationary/stable time series {z;}. Following Grillenzoni (1996), one has

Jm EI[th()\) - ¢]2 = (%%)E(zf_l)—laﬁ (3.6)
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(see also the Appendix, Section A.3). Compared with the variance of the OLS estimator,
one may note that the ratio (1—X)/(1+X) has the same role as 1/n; therefore, it represents
the equivalent number of observations. This term can be used for tuning [f;()) — 1],
whenever the series Z; does not contain marked trends (i.e., roots greater than unity).
Summing up, the adaptive DF statistics developed in this article are given by

SO0 = (=073 [60-1] ~ D) 3)
T\ = Rt“2\/1+/\[$t()\)—l] ~ DF(2), (3.8)

where the distributions hold for values of ¢, A sufficiently large. Test procedures based
on (3.7)—(3.8) enjoy differences and similarities as we now discuss.

Similarities. In both cases, decision rules for testing Hy are those of the constant
parameter case. Moreover, the statistics are relatively invariant to choice of the factor X,
because their components tend to balance each other. In practice, when \ decreases, the
algorithm sensitivity increases and hence the distance |l$t()\) — 1|}; on the other hand,
the remaining components of (3.7)~(3.8) decrease.

Differences. Solution (3.8) has a great advantage over (3 7) in that it depends only
indirectly on the sample size. Moreover, a similar feature holds for the DF(2) distribution,
whose critical values do not vary substantially for n > 25 (see Fuller 1996, p. 642).
Finally, for reasons discussed below (3.6) the statistic, S¢, can be used in practice only
if the series Z; does not contain marked trends.

4. APPLICATIONS AND SIMULATIONS

This section presents applications to real and simulated data that aim to check the
validity of the framework developed in Section 3. Case studies focus on two financial
datasets published in statistical books. This choice is motivated by the fact that for many
financial processes the hypothesis of random walk (or unit root) models is theoretically
and empirically verified. Largely untreated is the problen of parameter variability.

Application 1. First we consider the daily IBM stock price series published in Box
and Jenkins (1976) and displayed in Figure 4(a). Figures 4(b) and (c) show recursive
estimates of model (2.1) obtained with the algorithm (2.3) implemented with A = .97, .85.
Initial values R1,$1,¢‘7f were obtained from OLS estimates over the first n = 25,15
observations. Figures 4(d), (e), and (f) display the statistics (3.7)—(3.8) together with
their 95% critical values.

One may note that estimates @, vary around unity and statistics T3(\) show that such
variability is significant. In fact, the test rejects the null in certain periods and accepts it
in others. Furthermore, rejection occurs both in favor of ¢ > 1 (at the beginning) and
¢ <1 (at the end of the sample). Since Figures 4(e) and (f) lead to the same decision,
one can also conclude that the recursive T test is relatively insensitive to the design of
A

Application 2. The second application focuses on the weekly average of the HSI
index series published by Tong (1990) and plotted in Figure 5(a). Unlike the IBM one,
this series has a marked stochastic trend, that should lead to rejecting Hy in favor of
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Figure 4. Results of Application 1: (a) IBM time series; (b)—(c) recursive estimates of ¢t with A = .97, .85;
(d) statistics (3.7) (—) and (3.2) (- - -); (e}-(f) statistics (3.8) (——) and critical values (- - -).

H,: ¢ > 1. Figures 5 (b) and (c) show the recursive estimates obtained with the same
designs as in Application 1. In particular, A = .97 belongs to the range .95 +.99 which is
usually suggested in the literature (e.g., Ljung and Soderstrom 1983), whereas the other
is more extreme. '

As regards as initialization of algorithm (2.3) with small sample OLS estimates, one
can note that n = 25, 15 provide values of R, which render the initial varlablllty of b
consistent with the subsequent one. The Bayesian approach treats R as the variance
of the a priori distribution of ¢, and therefore recommends choosmg it large—that is,
R, small. However, in our experience this was not a good design, just because the scale
of the series must be considered.

Figures 5(d), (e), and (f) show the path of statistics (3.7)—(3.8) together with their
95% critical values; the same conclusions as before can be drawn. In particular, test
based on T3(\) rejects Hp in certain periods, detects significant variability of parameters,
and is insensitive to the design of \. Moreover, none of these findings were confirmed
by the statistics Sz, S¢()\), whose values are uniformly insignificant on 2 < ¢ < n.

Simulation. We conclude with a simulation experiment that aims to check the per-
formance of previous tests in situations of changing and constant parameters. For the
process in Figure 1 with initial condition Zo > 0 (to reduce the problem of transient
‘behavior), N = 100 replications of length n = 200 were fitted with algorithm (2.3). Best
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Figure 5. Results of Application 2: (a) HSI time series; (b) (c) recursive estimates of ¢¢ with A\ = .97, .85; (d)
statistics (3.7) (—) and (3.2) (- - -); (e){f) statistics (3.8) (—) and critical values (- - -).

MSE design was found to be A = .8, whereas R; > 0 did not affect the average values
é: = 1001 Z;iol ¢A5u, t = 1...200 of the estimates, so it was selected as R; = 1, like
1,63,

Numerical results are displayed in Figure 6. Specifically: Figure 6(a) compares the
paths of ¢; and ¢;()\). Figures 6(b) and (c) provide the mean values T}, S; of statistics
(3.7)-(3.8), together with their 95% critical values. Figure 6(d) shows the values of T:
generated under Hy, together with their twice standard errors.

We can conclude that the estimator (2.3) has a good estimation ability because the
paths of ¢, @:()) are quite close. As in applications to real data, only Ti(\) detects
departure from unity and time-variability of the root. Figure 6(b) also shows that such a
decision is clearer when the root is greater than one. Finally, the experiment in Figure
6(d) serves to evaluate the power of the T test. As we may see, the performance is
uniformly good.

Final Remarks. From previous applications, we have seen that recursive DF tests
can detect departures from unity of a root on certain periods. A practical meaning when
test statistics cross critical bands is that roots change significantly. Because the slopes
of the series also change significantly at these points, the procedure may be used for
identifying turning points in nonstationary processes. This result can have important
applications both in signaling and forecasting problems.
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Figure 6. Results of Simulation: {a) parameter (- - -) and estimates (—); (b) statistics (3.8) (—) and critical
values (- - -); (c) statistics (3.7) (—) and (3.2) (- - -); (d) statistics (3.8) (—) and 2SE (- - ) for a pure random
walk.

It should be noted that our method is tuned on the trade-off between estimation
sensitivity and estimation accuracy involved by the weighting rate. In particular, when
A decreases and the variability of test statistics increases, the equivalent sample size
(I = X)/(1 4+ X) also decreases, so that the width of critical bands increases. As a
consequence, the probability of rejecting Hy when this is false (i.e., ¢; # 1 for the action
of the sampling error) increases. However, unlike stationary processes (see Grillenzoni
1996), critical values do not vary significantly for n > 25. This invariance is due to the
superconsistency property of the LS estimator when it is applied to unit-root processes.

Finally, our inferential method is adaptive, both in the sense of time-varying (as in
engineering) and nonparametric (as in statistics). Here, the limit conditions developed in
Section 3 resemble those in the analysis of kernel type estimators, where the bandwidth
h — 0 must satisfy t A® = O(1) (see Hérdle 1991)—that is, A o 1/+/t. In our context the
smoothing coefficient is A — 1, and must satisfy ¢(1 — A) = O(1), hence (1 — ) o 1/t,
as for the bandwidth.
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APPENDIX: TECHNICAL DETAILS
A.1 WLS aNp KERNEL ESTIMATION

The nonparametric nature of the framework (2.2)~(2.3) may be defined more specif-
ically. It is well known that a kernel-type estimator for the regression function of the
nonlinear model Z; = g(Z;_) + a;, minimizes the weighted criterion (see Hérdle 1991)

P(z) =) wil2)[Zi - 9(2)]%  wil2) = K[(zt;fz("—)l)/h] ’
=2 ‘ (2

where 2 € R real, K() is the kernel, and f;(2) is an estimator for the density. This
approach can be used for deriving the kernel estimator for (2.1) when ¢ is a deterministic
function. In this case, the regression function is g(t,2) = ¢(t)z and conditionally on
z = Zy_; the parametric part is ¢(t); moreover, the weights of FP,(-) become w;(t) =
K{[(t — 1)/h]/(th), because ¢ is deterministic and f(t) = 1. Thus, from the relationship
between the functionals P(-) and Q(-), the resulting algorithm is given by (2.2) with
the weights A*~* just replaced by K|[(t — 4)/h]. Fundamental problems of this solution
are the difficulty of obtaining the recursive implementation; moreover, it complicates the
statistical analysis.

A.2 Proor or FormurA (3.1)

We recall that any real random variable is as big as its standard deviation: = =
O,(03), thus the fundamental step is computing the variance of the sums in (3.1)

var(i)\”‘tzt) Zw —t- ’ZZ)
t=1

M:

o+
—

2

Il
Ma/\
M:

ant Xn—s to.2 S no-
t=1 s=1 : (1=2%)
n n n
ar( Z At Zt_lat> = E( Z Nn—t=s 7, g, asZS_l)
t=1 t=2 s=2
n 4 . 4
— Z ,\2("_t)(t— 1)0_2 < nd < na'

t S0=x = a=-N

1
N}

The expression of var(}_, A"~ tZ?) is given in (A.9), but is complicated. To prove (3.1)
we recall Z; = Op (/) so that Z2 = Op(n) for t < n. Thus, 3, A"t ZZ <no*/(1-1)
in probability.

A.3 THE DISTRIBUTION OF EXPONENTIALLY WEIGHTED FUNCTIONALS

The first result we need to prove (3.3)-(3.4) is the extension of the so-called func-
tional central limit theorem (CLT) to exponentially weighted sums of random variables.
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Let
fnr]
a[nr] = A[Tni-] Z A[”’]"tat, a ~ lld(O, 0‘2), (Al)
t=1
where 0 < (r,A) < 1, [-] = int(-) denotes the integer-value function and A, =

(3te; A™7Y). Obviously, as (r,A) — 1 the above converges to the classical sample
mean.

It should be noted that (A.1) uses only the first rth fraction of observations; in any
event, even keeping r < 1 the central limit theorem still holds when A — 1:

- - 1
inr] = \/Anr * Gjnr) N N(O, 50’2) (A.2)

as n — o, A — 1. The factor 1/2 in the variance of (A.2) can be explained by the fact
that

[nr] AZ([nr]-—t)UZ 1/(1 _ )\2) )
t=l a n, JU=A) 5 A 1,
Zg':l] Alnr]—t — 17(I=N o, — 20‘a (A.3)

var (5[nr]) =

where, as in Section 3, we assume that the order of the limits cannot be inverted.

We now investigate if a similar property holds for stochastic functionals of r, such as
An(r) = A;' IV Alnrl=tq, For any given realization, this is a bounded step function
defined on j/n < r < (j +1)/n with j = 0,1...n; therefore

v —./ =15 L T o2
An-Ap(r) = A[m-]An dinr) — N(O, 20'0,) (A4)

as n — 00, A = 1 with n(1 — A) — 1. This can be proved by using (A.2) and assuming
A = (1 - 1/n); indeed

["l”'] Alnrl-t n 1 n—t] "1 [nr] 1 [nr]—t n
ety =B = [ 0-0) ] [ 0-m) ]
t=1 t=1
which also holds by replacing the finite sum A, by its limit 1/(1 — A).

The functional CLT for exponentially weighted sums can be obtained by noting that
Bn(r) = An(r)/[(1 = X)o2/2]'/? tends to behave like a standard Brownian motion.
Indeed for any r, > r; the statistics (13) are asymptotically independent, and (A.4)
implies that

An(TZ) - An("'l) L
(1—-A)ai/2

[Bu(r2) = Ba(ry)] = N[0, (rs = )] (AS)
as n — 00, A —= 1 with n(1 — A) — 1. By definition, a standard Brownian motion W ()
is a continuous-time process on [0, 1] having independent Gaussian increments, therefore
Bn(:) = W(:) in law.

As a conclusion, we may note that fundamental difference of the above with clas-
sical results is the factor 1/2 in the expressions (A.2)~(A.5). This does not mean that
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exponential weighting allows for more efficiency; on the contrary, (A.1) has the same ef-
ficiency as the common n-sample mean whenever (1 —\)/(1+ ) = 1/n (see (A.3) and
(3.6)). Given A « 1, this equivalence can be achieved only by processing a larger
number of observations; for example, A = .95 implies n = 39, but .95 # 0 or

52,9509t £ 1/(1 — .95).

A4 APPLICATIONS OF THE CONTINUOUS MAPPING THEOREM

By viewing the weighted LS estimator (2.2) as a transformation of the statistic (A.1)
the proofs of (3.3)~(3.4) can now be achieved by applying the so-called continuous
mapping theorem (CMT) (e.g., Hall and Heyde 1980, p. 276) to (A.4)—(A.5). This theorem
states that if Bp(-) 4 W() and g() is a continuous functional, then 9[Bn()] =
g [W( )] Now, the key element of the application consists of recalling that the bounded
process zi n, = Zt/ \/;17;, which corresponds to B, (t/n) in (A.5), converges in law to
Wi(r) as t/n —r.

Let us start with

X
>
-
H
—
—
|
>
SN
[

Nt . (1_)‘) - < n—j
7 t=1/\ Ze= 7 (ZA )at (A.6)

we are interested in analyzing the distribution of statistic (A.6) as n — co,A — 1 at the
same rate. This may be achieved by letting A = (1 — 1/n), which yields

Cn = %g (1 - %)M% RN i"\/—i-/ol W (r)dr (A7)

as n — oo. Result (A.7) follows by noting that Zy/\/n — 0,W(-) and applying the
CMT to the transformation g(-) = n~! 3_;._,(-); moreover, it is known that the random
variable fo W (r)dr ~ N(0,1/ 3) (see Hamllton 1994 p. 485). Therefore, from (A.6) with
A= (1 —1/n) one may obtain

=-1_3§=:{2( n)”'jro—g », % (A8)

=1

which can easily be assesed by numerical evaluation.
Similarly, it can be shown that as n — co, A = 1 with n(1 - X) = 1:

— n 2l
Dy =4 ’\)Zxﬂ-tzz_l N % /O W2 (r)dr (A9)

n
t=2

En(A) =

. o2 [
- -2 W{r)dWw(r). (A.10)
> % [ woawe)
In fact, application of the CMT yields u; , = Z2_,/n — 02 W2(-) and vy, = (Z¢—1/
vn)a; = o2 W(-)dW (), because a; = (Z; — Z¢—;). Subsequently one can analyze the
statistics (1 — A) Sp; A" Pupn, and V1 — A3 A" F oy, with the same approach
as in (A.6)-(A.7).
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In particular, in the classical analysis it is well known that the sums n™2 %7 , Z2 |
and n~! Z?:z Z;_a; converge to the same expressions as (A.9)-(A.10) but without the
factor 1/+/2; the corresponding limit variances being 0% /3 and o% /2, respectively, (see
Fuller 1996, p. 367). Now, using the formula var(3, Z) = 3, var(Z7) +23,; 2
cov(Z;, Z;) one can get

n n—1
var(z A"‘tth_l> = Z M= 2820% 4t py)
t=2 t=1
n—2 .
+23y NN 268 (n—1-4), (Adl)
j=1

with pg4 = E(a}). Thus, proceeding as in (A.8) one can obtain var(D,) — o%/6, and
similarly var(E,) — o4 /4. These variances are half of the classical ones and motivate
the factor 1/+/2 in expressions (A.9)~(A.10).

By expressing the above statistics in recursive form (i.e., letting n = ¢), from the
ratio of (A.9) and (A.10) we prove the result (3.3) of Section 3. Moreover, using the
same invariance principle one has

1/2 1/2

F,(\) = a-X% i Antz? L % / 1 W2(r)dr (A.12)
noi= V2 Jo

n — 00, A = 1 with n(1 — X) — 1. Note that multipling (3.2) by F;()), the quantity in

(A.12) expressed in recutsive form, one can obtain the statistic /R 57! [ () — 1].

Hence, result (3.4) follows from the ratio of (A.10) and (A.12).

[Received June 1998. Revised February 1999.]
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