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This article develops models for environmental data recorded by meteorological satel-
lites. In general, such data are continuously available for suitable space and time units and
are intrinsically nonstationary. Space-time auto-regression (STAR) is a class of models that
can be used in monitoring and forecasting, but it must be adapted to nonstationary processes.
A set of adaptive recursive estimators is then proposed to estimate STAR parameters that
change both over space and time. An extensive application to the normalized difference
vegetation index (NDVI), for a region of sub-Saharan Africa, illustrates and checks the
approach.
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1. INTRODUCTION

Analysis of vegetation activity is fundamental in monitoring forest and agricultural
resources. The normalized difference vegetation index (NDVI) is the main tool for ac-
complishing this task. Since 1980 it has been recorded daily by NASA meteorological
satellites that have world-wide coverage. For this reason it is extensively used by the Food
and Agricultural Organization (FAO) to monitor subtropical areas. Substantial increase of
desertification in sub-Saharan countries is well documented (e.g., Tucker, Dregne, and New-
comb 1991). Desertification is held responsible for many social problems, such as famines
and migrations toward Europe.

Vegetation activity is a continuous space-time process and NDVI data provide a space-
time lattice system, in the sense that observations are available over a regular grid. Spatial
resolution usually ranges from 1 to 8 kilometers, while the temporal one ranges from 10
days to 1 month. In this way, more aggregate datasets can be easily constructed. It should
be noted that space-time processes cannot be assimilated to 3D random fields, because
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time provides a natural causal ordering. As a consequence time series models are the basic
schemes for representing such processes.

Space-time auto-regression (STAR)—see, for example, Ali (1979), Tjøstheim (1983),
or Niu, McKeague, and Elsner (2003)—is a class of linear models suitable for lattice data. In
this context, each observation is placed in linear relationship with previous and surrounding
values to produce forecasts. To deal with environmental phenomena, such models must be
adapted to their intrinsic nonstationarity. By this we mean presence of spatial and temporal
trends, existence of spatial heterogeneity, slow changes due to natural evolution, and fast
changes due to satellite substitution. All of these problems create a situation of time-varying
parameters which is typical of time series analysis (e.g., Grillenzoni 1998). However, the
original and unexplored problem here is the presence of the spatial dimension.

This article develops a statistical methodology for space-time systems with time-
varying parameters. It extends the approach developed by Grillenzoni (1994, 1998) based
on the unification of adaptive recursive estimators. We aim to apply this methodology both
to monitor long-term changes of vegetation activity and to check improvement in short-term
forecasts. Application concerns monthly data of a sub-Saharan region of central Africa and
it will be developed throughout.

There are many works concerning the analysis of NDVI data in the form of spatial
matrices (images). For example, Faivre and Fischer (1996) use highest resolution images
to predict (estimate) crop reflectances by means of random coefficient regression models.
However, such studies usually consider NDVI and related radiance data at a given instant
of time. This article deals with the whole sequence of historical data to predict future values
of vegetation.

The plan of this article is as follows. Section 2 provides detailed description of the
dataset. Section 3 discusses STAR models with unit-roots. Section 4 derives recursive
parameter estimators and Section 5 uses the estimators for forecasting.

2. DATA DESCRIPTION

The NDVI index is generated in NASA’s Goddard space flight center (GSFC), by pro-
cessing data of the advanced very high-resolution radiometer (AVHRR) aboard the NOAA
satellites. Specifically, AVHRR is a five-channel instrument which measures reflectances
and brightness temperatures, while NOAA 7, 9, 11, 14 are polar orbiter satellites, which
have flown in the periods 1981–1985, 1985–1988, 1988–1994, 1994–2000.

Radiance data from the shorter wavelength channels, namely the visible (C1) and
the near-infrared (C2) one, are combined into the ratio NDVI = (C1 + C2)/(C2 − C1)
which gives an indication of the vegetation activity. In fact, it is positively correlated with
the absorption of red light by plant chlorophyll and the reflection of infrared radiation by
water-filled leaf cells.

At GSFC a consistent processing algorithm is used to recalibrate all of the measure-
ments. In particular, radiance data are corrected for atmospheric distortions caused by
rayleigh scattering and ozone absorption, to produce “at-ground” reflectance estimates.
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Moreover, information from the thermal channel (C5) is used for reducing cloud masking.
However, the entire process of data generation is still affected by a number of short-

comings: namely, the difficulty in accurately determining satellite orbit, the decreasing
sensitivity of the AVHRR instrument over time, the selection of an early afternoon crossing
time, which generally coincides with maximum cloud development (e.g., Emery, Brown,
and Nowak 1989). In order to mitigate such problems, data are built by resampling and com-
bining the highest vegetation values obtained over 10 days of measurements. Finally, NDVI
data are mapped to Hammer-Aitoff projection and aggregated into spatial units (“pixels”)
of size 7.638 kilometers (km), which allow suitable display on a 1024 by 1280 screen.

The sample. At the Internet address http://daac.gsfc.nasa.gov, an online ftp service
is available for retrieving NDVI data in binary format. For the needs of the present study
we considered a rectangular sub-Saharan region placed at the borders of Chad, Sudan, and
the Central Africa Republic. To be precise, the region has latitudes (4.5, 16.5) north and
longitudes (22.9, 25.9) east; it lies 1,000 km southeast of lake Chad and includes mountains
such as Gebel Marra (3,088 m). In terms of 7.6 km “pixels,” it corresponds to a matrix with
168 rows and 45 columns. Data are of monthly type and cover the period from September
1981 to December 1999.

The entire dataset can be organized as a three-way matrix Z = {Zijs} of size 168×
45× 220, where i, j, s indicate latitude, longitude, and time in months. To have a synthetic
view of the NDVI phenomenon, data can be averaged both in space and in time. Indicating
with t time in years and noticing that for the first year (1981) only four months were
available, we have

Spatial Averages : Z̄••s =
1

168 · 45

168∑
i=1

45∑
j=1

Zijs , s = 1, 2 . . . 220

Yearly Averages : Z̄ijt =
1

12

(t·12)∑
r=5+(t−1)·12

Zijr , t = 1, 2 . . . 18

Longitudinal Averages : Z̄i•t =
1

45

45∑
j=1

Z̄ijt , i = 1, 2 . . . 168. (2.1)

The results are displayed in Figure 1; in particular, Figure 1(a) provides the time path of
the spatial averages Z̄••s, and Figure 1(b) shows the latitudinal path of the longitudinal
averages Z̄i•t. Finally, Figure 1(c) displays in 3D the 1999 average matrix Z̄ij18.

As may be expected, NDVI data have strong seasonality, a random walk pattern at time
and longitudinal level, and a significant latitudinal trend, because it increases from north
(savanna) to south (forest). At spatial level, vegetation activity is also conditioned by hills
and mountains which capture the humidity, as happens at the point (i, j) = (50, 20) in
Figure 1(d,e), which is the site of Gebel Marra. We may also appreciate that, seasonality
apart, there is not a marked negative time trend in such data. Also, the decline in recent
years (from s = 160 or t = 14) could be attributed to the last change of satellite which in
fact occurred in September 1994.
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Figure 1. Behavior of NDVI data: (a) Time path of spatial averages and their trend; (b) latitudinal path of yearly
longitudinal averages; (c) 3D profile of the 1999 matrix; (d,e) plot of the series Z̄i20t and Z̄50jt at t = 18.
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Table 1. Third-Order Dependence Scheme of a Space-Time Process on a Regular Lattice. The number
in parentheses indicate distances from the central cell.

↑ . . . . . .

i . . Zi + 2j t −1 (3) . . .
. . Zi + 1 j − 1t − 1 (2) Zi + 1 j t − 1 (1) Zi+ 1 j + 1 t − 1 (2) . .
. Zi j− 2 t − 1 (3) Zi j− 1 t− 1 (1) Zi j t (0) Zi j + 1 t− 1 (1) Zi j+ 2 t− 1 (3) .
. . Zi− 1 j− 1 t− 1 (2) Zi − 1 j t − 1 (1) Zi− 1 j + 1 t − 1 (2) . .
. . . Zi − 2 j t− 1 (3) . . .
. . . . . j →

In the subsequent statistical analysis the dataset will be spatially subsampled and tem-
porally aggregated. In practice, a three-way matrix of size 99 × 33 × 18 of yearly data
{Zijt} will be extracted from the original matrix Z. This was done both in order to reduce
the amount of computations (which in certain cases are particularly demanding) and to
exclude near-desert and permanent forest zones.

3. UNSTABLE STAR MODELS

Satellite NDVI data form a lattice dependent process, because the observations on the
cells are expected to be correlated spatially and temporally. However, while in the time
dimension there is a well-defined causal direction (from past to present), in space there
is no preferred direction. This situation poses a problem in using multidimensional spatial
autoregression (SAR) (e.g., Tjøstheim 1983) in modeling such processes. In fact, data matrix
Z of the previous section does not coincide with the realization of a 3D spatial process, for
example, a water or an oil field.

Following the causal ordering of time, we expect observations {Zijt} (where i, j, t

indicate latitude, longitude, and time), to depend on its past and surrounding values, as
displayed in Table 1. Assuming first-order dependence in time and second order in space,
the STAR representation becomes

Zijt = φ1Zijt−1 + φ2Zi−1j−1t−1 + φ3Zi−1jt−1 + · · ·+ φ9Zi+1j+1t−1 + aijt

= φ′xijt + aijt, aijt ∼ IID(0, σ2
a), Zij0 = aij0, (3.1)

where {aijt} is a white noise process, φ is the vector of parameters, and x′
ijt =

[Zijt−1, Zi−1j−1t−1 . . . Zi+1j+1t−1 ] is the vector of “regressors.” In practice, the process
in each cell depends first on its previous value (as in standard time series) and then on the
past values in the nearest neighbor cells.

An extension of the model (3.1) to general space-time lags is given by

Zijt =
p∑

l=1

q∑
k=−q

q∑
h=−q

φkhl Zi−k j−h t−l + aijt (3.2)

which can be denoted as STAR(2q, p), where p ≥ 1, q ≥ 0 are the orders of the temporal
and spatial parts. For simplicity, in the models (3.1) and (3.2) we have omitted instantaneous
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(φkh0 Zi−k j−h t) and moving average (θkhl ai−k j−h t−l) components, because our primary
interest is the analysis of nonstationarity.

To achieve parametric parsimony in the representation (3.2), one could aggregate and
average the spatial terms which are present at the same time lag, namely

Zijt =
p∑

l=1

Φl Z̄ijt−l + aijt , Z̄ijt−l =
1

(2q + 1)2

q∑
k=−q

q∑
h=−q

Zi−k j−h t−l, (3.3)

where Z̄ijt is the mean process on a square. Equivalence of (3.3) and (3.2) follows in the
case of homogeneous parameters at spatial level: φkhl = Φl; a condition which may be
realistic for noncentral components (k, h �= 0). Equation (3.3) resembles a pure time series
model and, indeed, has stability properties which are similar to an AR(p) process. We now
discuss this aspect with some detail.

3.1 STATISTICAL PROPERTIES

Causality and stability are useful features for space-time models and are important
conditions for the statistical properties of parameter and forecast estimates. As a general
definition we adopt the following one.

Definition. A stochastic dynamical system is causal if the output only depends on
past and present values of the input. It is stable if to inputs bounded in probability there
correspond outputs with the same feature.

As regards space-time models, (3.1) and (3.2) are causal and stable if admit a unilateral
and convergent decomposition of the type

Zijt =
∞∑
l=1

lq∑
k=−lq

lq∑
h=−lq

ψkhl ai−k j−h t−l + aijt.

This representation can be obtained by solving the models with initial conditions Zij0 =
aij0; the weights ψkhl depend on the parameters φkhl in a complicated way. Absence of
instantaneous components Zi±k j±h t in the vector of regressors xijt enables the above to
be unilateral; its convergence depends on the roots of the transfer function φ(z1, z2, z3) =
1−∑

l

∑
k

∑
h φkhl z

k
1 zh

2 zl
3 .

Proposition 1. Model (3.1) is stable if (
∑9

k=1 |φk| ) < 1, and (3.2) is stable if the
polynomial (3.4) has roots outside the unit circle |z| = 1

Φ(z) =

(
1−

p∑
l=1

Φl z
l

)
, Φl =

q∑
k=−q

q∑
h=−q

φkhl. (3.4)

See Tjøstheim (1978, p. 142) and Ali (1979, p. 514) for the proof. The above recalls
a well-known result of time series analysis and is motivated by the fact that STAR models
are firstly temporal models. Moreover, under spatial homogeneity (isotropy) the individual
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processes {Zijt} form a collection of proxy time series, which can be aggregated as in the
model (3.3).

Although conditions in (3.4) are relatively simple, it is difficult to derive specific con-
straints on the coefficients φkhl. Given a certain model, it is more convenient to check its
stability by means of repeated simulation experiments. In any event, stability itself has a
limited practical value: First of all, real data contain spatial and temporal trends, which can
be represented only through unstable models (see simulation below). Second, as is known
in time series analysis, unstability does not affect consistency of parameter estimates (e.g.
Grillenzoni 1998), and this holds even in spatial processes (see Bhattacharyya, Richardson,
and Franklin 1997).

Estimation of STAR models has mainly focused on Yule-Walker and maximum like-
lihood methods (see De Luna and Genton 2002). Owing to its flexibility, we are inter-
ested in the least squares (LS) approach. Such estimator minimizes the functional QN =∑

t

∑
i

∑
j a2

ijt, and its expression is simply given by

φ̂N =

⎛⎝ nt∑
t=1

ni∑
i=1

nj∑
j=1

xijt x′
ijt

⎞⎠−1
nt∑
t=1

ni∑
i=1

nj∑
j=1

xijt Zijt, (3.5)

where for model (3.2), N = (nt − p)× (ni − 2q)× (nj − 2q) is the effective sample size
and x′

ijt = [Zijt−1 . . . Zi−q j−q t−1 . . . Zi+q j+q t−p ] is the vector of regressors.

Proposition 2. Under model stability and causality, the estimator (3.5) is asymptotically
equivalent to the Gaussian maximum likelihood method, and

√
N
(
φ̂N − φ

)
L−→ N

[
0, E(xijt x′

ijt)
−1σ2

a

]
. (3.6)

For the proof see Ali (1979) or Tjøstheim (1983, p. 569). Extension of result (3.6) to
unstable models has been studied only for particular cases. For the spatial model Zij =
αZi−1 j + βZi j−1−αβZi−1 j−1 + aij , Bhattacharyya et al. (1996, 1997) have shown that
(3.6) holds even under the “unit root” condition α = β = 1, by replacing

√
N with N 3/2.

This situation is somewhat different from time series model, where in presence of unit roots
neither the distribution nor the dispersion of the estimator can be specified (e.g., Dikey and
Fuller 1979).

Simulations. To check the properties of (3.5) for unstable STAR models, simulation
experiments are useful. We then considered the first-order system

Zijt = ±0.21Zijt−1 + 0.11Zi+1 j t−1 + 0.31Zi−1 j t−1

+0.16Zi j−1 t−1 + 0.26Zi j+1 t−1 + aijt (3.7)

with aijt ∼ IN(0, 1) normal and sample sizes ni = 50, nj = 100, nt = 75.
According to the previous analysis, models (3.7) are unstable because

∑
k |φk| = 1.05.

Figure 2 (a,b) confirms this behavior by plotting the final realization Zij75. Note that the
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Figure 2. Realizations of the process (3.7) with parameters: (a) φ1 = + 0.21; (b) φ1 = −0.21.

model with φ1 = −0.21 is unsuitable for representing real data because the generated
patterns are extremely erratic.

Estimator (3.5) was applied to 100 independent replications of the process (3.7). We
also included the null term 0.0Zi+1 j−1 t−1 in the model, in order to check the usefulness
of the estimator for identification purposes. Subsequently, we repeated the experiment on
a stable version of (3.7) in which the value of parameters is reduced by 0.06 and with
φ1 = −0.15. Numerical results are reported in Table 2, together with the test for normality
by Bera and Jarque (1982), whose critical value is χ2

0.05(2) = 6. We can conclude that,
even under model unstability, LS estimates retain optimal statistical properties, with the
sole exception for normality when parameters have negative sign (see Table 2(b)).

Serious problems for the LS estimator may arise when the models are noncausal, that
is, when instantaneous terms Zi±k j±h t are present in the vector of regressors xijt. As in
simultaneous equation systems, identifiability constraints must be introduced, such as the
half-plane and the one-quadrant specification of the matrix ΦΦΦ0 = {φkh0}. These solutions
still preserve causality, because enable recursive computation of residuals and forecasts;
however, they need suitable initial values on the upper-left border of the data matrix. As a
consequence, Niu et al. (2003) showed that instantaneous terms improve fitting, but may
significantly decrease the forecasting performance of space-time models.
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Table 2. Simulation Results of Estimator (3.5) Applied to the Model (3.7). Rows: (1) mean values, (2)
root mean squared errors, (3) tests for normality.

Design φ0 (0.0) φ1 (0.21) φ2 (0.11) φ3 (0.31) φ4 (0.16) φ5 (0.26)

(a)
Mean 0.0002 0.2100 0.1100 0.3100 0.1599 0.2599
RMSE (0.0011) (0.0013) (0.0012) (0.0012) (0.0013) (0.0014)
N-test 1.45 1.93 2.12 1.79 3.19 1.65

(b)
Design φ0 (0.0) φ1 (−0.15) φ2 (0.05) φ3 (0.25) φ4 (0.10) φ5 (0.20)

Mean 0.0001 −0.1501 0.0499 0.2501 0.0999 0.1999
RMSE (0.0016) (0.0015) (0.0015) (0.0015) (0.0015) (0.0016)
N-Test 0.324 7.50 3.04 6.17 0.843 2.73

3.2 THE CASE STUDY

In this subsection we build and compare alternative STAR models for the NDVI data.
Rather than selecting the best solution, we are interested in a parsimonious one, on which
to apply adaptive methods. Classical methods of identification (e.g. Niu et al. 1995, 2003),
first stabilize data with differencing (Zijt − Zijt−1), then analyze space-time autocorre-
lation functions (e.g., Pfeifer and Deutsch 1980). However, these are difficult to interpret,
especially when the models have an irregular (subset) structure; moreover, differencing may
be arbitrary or may be performed in one of the spatial dimensions.

Original Series. Given the consistency of the LS estimator when is applied to unstable
processes, one may build dynamic models without differencing (e.g., Parzen 1982). The
analysis of univariate models is a necessary starting point

AR(1) Zijt = 0.9987Zijt−1 + aijt, σ̂2
a = 16.79

+drift Zijt = 5.96 + 0.963Zijt−1 + aijt, σ̂2
a = 16.46

AR(2) Zijt = 0.878Zijt−1 + 0.120Zijt−2 + aijt, σ̂2
a = 16.55. (3.8)

The large number of observations (N = 58,806) involved in the study, renders model
comparison difficult because it inflates many of the statistics.

For example, in the model (3.8) the parameter φ̂1 ≈ 1, but it is not a unit root because
the studentized statistic t1 = (φ̂1 − 1)/σ̂φ = −12.7 is 99% significant in the Dickey and
Fuller (1979) test. Second and third model seem to indicate the usefulness of drift and
AR(2) components, because F -statistics (on the reduction of the residual sum of squares
with respect to the first model) are greater than 900. In both cases, however, the reduction
of σ̂2

a with respect to (3.8) is 2% only, and the magnitude of additional parameters is small.
More interesting is the analysis of the effect of spatial components on the relative size of

the coefficients. Estimation of the model (3.1) provided σ̂2
a = 16.015, φ̂1 = 0.404, whereas

the remaining coefficients ranged in [0.05, 0.10], in such a way that
∑9

k=2 φ̂k = 0.595.
Also their standard errors were homogeneous because ranged in [0.0095, 0.0125], so that
all estimates were 99% significant. To achieve a parsimonious representation, one may
aggregate the neighboring values of Zijt−1 as in Equation (3.3).
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Table 3. Statistics of STAR Models Estimated on Original Data. The quantities in parentheses are
standard errors and the F-statistics are computed sequentially.

Eq. φ̂1 φ̂2 φ̂3 φ̂4 σ̂2
a BIC F

(3.8) 0.9987 (0.0001) . . . 16.791 2.821 .
(3.10) 0.384 (0.012) 0.615 (0.012) . . 16.067 2.778 2504
(3.11) 0.388 (0.012) 0.335 (0.012) 0.276 (0.014) . 16.062 2.777 18.3
(3.9) 0.417 (0.013) 0.314 (0.025) 0.158 (0.023) 0.109 (0.016) 16.009 2.774 184.8

An aggregate model having a third order spatial dependence as in Table 1 is

Zijt = 0.417Zijt−1 + 0.314 (Zij−1t−1 + Zij+1t−1 + Zi−1jt−1 + Zi+1jt−1)/4

+0.158 (Zi−1j−1t−1 + Zi+1j+1t−1 + Zi−1j+1t−1 + Zi+1j−1t−1)/4

+0.109 (Zij−2t−1 + Zij+2t−1 + Zi−2jt−1 + Zi+2jt−1)/4 + aijt, (3.9)

where σ̂2
a = 16.009. The small size of the last two coefficients in (3.9) suggests simplyfing

the model by retaining only the nearest neighbor terms as follows

Zijt = 0.384Zijt−1 + 0.615 (Zij−1t−1 + Zij+1t−1 + Zi−1jt−1 + Zi+1jt−1)/4 + aijt,

(3.10)

where σ̂2
a = 16.067. With respect to previous estimates, model (3.10) indicates the impor-

tance (weight) of the spatial component. Such a component can be further decomposed into
its latitudinal and longitudinal parts as follows

Zijt = 0.388 Zijt−1 + 0.335 (Zi−1jt−1 + Zi+1jt−1)/2 +

+0.276 (Zij−1t−1 + Zij+1t−1)/2 + aijt, (3.11)

where σ̂2
a = 16.062. As should be expected, the north-south coefficient is greater than the

east-west one, and both are smaller than the central one.
Previous estimates are summarized in Table 3 and formal tests are provided. One may

note that the models (3.9)–(3.11) are nearly equivalent from the fitting viewpoint (namely
σ̂2

a), although their t and F statistics state the contrary. To avoid these problems one may
resort to statistical information criteria, such as the consistent version of that of Akaike (see
Tjøstheim 1983, p. 572)

BICN (m) = log(σ̂2
a) + m log(N)/N , m = dim(φ).

This criterion aims to establish a compromise between model fitting and parametric com-
plexity and should posses a well-defined minimum. However, as N → ∞, BIC has the
same problems as t and F statistics, because log(N)/N → 0. As a consequence, in Table
3 the selected model would be (3.9), or (3.1), the less parsimonious ones.

Detrended Series. Problems of model selection can partly be solved by investigating
detrended series. Owing to the behavior of NDVI data in Figure 1, such operation can be
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Figure 3. (a,b) Latitudinal paths of the detrended series for the year t = 1999. (c,d) Information criteria of STAR
models fitted to series x, y (solid), and Z (dashed).

performed in two ways

Temporal Differencing (TD) : xijt = (Zijt − Zijt−1)

Spatial Differencing (SD) : yijt = (Zijt − Zi−1jt).

The resulting series for the year 1999 and for the entire region are displayed in Figure
3(a,b); in general, both transformations eliminate the marked north-south trend, although
with different characteristics.

Figure 3(c,d) display the value of information criteria of models STAR(q, p) of type
(3.9), fitted to the detrended and original series x, y, Z. The order of the spatial component
0 ≤ q ≤ 3 was increased conditionally on that of the temporal one 1 ≤ p ≤ 3; so that
12 schemes were analyzed: (q, p) = (0, 1), (1, 1), (2, 1) . . . (3, 3). For example, the model
with orders (3,1) for Z corresponds to the Equation (3.9).

Several comments can be done on the above estimates:

1. As in Table 3, the path of information criteria is nearly proportional to that of the
residual variances. As mentioned before, this is a consequence of the large sample size,
which hinders finding a well-defined minimum for BIC.
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Table 4. Estimates of the Parameters of a STAR(3,3) Model of Type (3.9) With a Constant Term α0.
The quantities t x

kl are t-statistics of parameters φkl estimated on xijt; (k,l ) indicate the spatial
and temporal lags, as reported in Table 1.

k, l φ̂Z
kl t Z

kl φ̂x
kl t x

kl φ̂
y
kl t y

kl

α0 4.59 27.4 −0.391 −24.7 0.046 3.51
0, 1 0.305 24.0 −0.569 −51.2 0.299 71.5
1, 1 0.217 8.63 0.106 4.86 0.219 26.7
2, 1 0.212 9.24 0.130 6.46 0.071 8.63
3, 1 0.258 14.3 0.179 10.7 −0.019 −2.31
0, 2 0.191 14.8 −0.290 −23.4 0.199 46.0
1, 2 0.038 1.51 0.022 0.89 0.061 6.98
2, 2 −0.104 −4.48 −0.038 −1.69 −0.025 −2.92
3, 2 −0.165 −8.80 −0.059 −3.22 −0.028 −3.32
0, 3 0.095 7.49 −0.131 −11.8 0.089 20.7
1, 3 0.065 2.64 −0.008 −0.37 0.063 7.39
2, 3 −0.044 −1.94 −0.060 −3.03 0.008 0.93
3, 3 −0.097 −5.27 −0.077 −4.60 −0.021 −2.46

σ̂2
a , (BIC) 14.325 (2.665) 13.601 (2.613) 3.465 (1.245)

2. From Figure 3(c), the performance of the models fitted to series Zijt, xijt is similar,
and both are significantly worse of the models for yijt. In Figure 3(d) one may note that the
behavior of Akaike and Hannan criteria is similar to BIC.

3. For series yijt, biggest reductions of information criteria occur for regression terms
having lags (k, l) = (1, 1), (0, 2); therefore, the implied model would be

yijt = 0.329 yijt−1 + 0.313 (yij−1t−1 + yij+1t−1

+yi−1jt−1 + yi+1jt−1)/4 + 0.238 yijt−2 + aijt.

Its fitting statistics are good: σ̂2
a = 3.52, tφ̂ ≥ 50, BIC = 1.26, and it is interesting to note that

the stability constraint is satisfied, because the polynomial φ(z) = 1− 0.642 z − 0.238 z2

has roots outside the unit circle.
Finally, we would like to provide detailed results of the estimation of a STAR(3,3)

model of type (3.9) with the inclusion of a constant term. Table 4 shows that models fitted
on Z, x have a similar performance, but the best absolute fitting is obtained on the series
y. On this series, however, the statistical significance of the constant term α0 is much
lower than the other cases. The drastic reduction of the residual variance of the models
for y, is a consequence of the fact that spatial differencing is similar to the inclusion of an
instantaneous term. Although this usually improves fitting, it may worsen the forecasting
ability, see Niu et al. (2003) and Section 5.

4. ADAPTIVE STAR MODELS

In many contexts estimation of dynamic models on real data has shown variability of
coefficients (e.g., Grillenzoni 1994, 1998). It is reasonable to expect that STAR models
applied to ecological data share this feature. The question is: how to model and estimate
parameters that change both over space and time?
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There are approaches in image processing and weather analysis where the Kalman
filter is applied recursively to data organized in vector form (e.g., Daley 1995). In practice,
this means choosing an a priori direction in space (e.g., the lexicographic order), and then
reducing the data matrix to a long vector. In space, however, one must assume that each
unit depends on the surrounding ones in every direction, and that such dependence follows
unknown probabilistic laws. All of these elements lead us to use a nonparametric approach
(see Fan and Gijbels 1996).

A simple way to obtain time-varying and space-varying estimates is simplyfing the LS
estimator (3.5) by dropping suitable summation terms, such as

Time-varying : φ̂t =

⎛⎝ ni∑
i=1

nj∑
j=1

xijt x′
ijt

⎞⎠−1
ni∑
i=1

nj∑
j=1

xijt Zijt

Space-varying : φ̂ij =

(
nt∑
t=1

xijt x′
ijt

)−1 nt∑
t=1

xijt Zijt.

These sequential methods usually provide very erratic estimates which may not be inter-
pretable nor may be useful in forecasting. Smooth alternatives arise by considering local
versions of (3.5); one of the most elegant solutions is that based on exponential weighting
(EW).

4.1 VARIABILITY IN TIME

We start with the case where parameters only change over time. The method of EW
regression concerns with the local LS estimator

φ̂t =

⎛⎝ t∑
l=1

ni∑
i=1

nj∑
j=1

λt−lxijl x′
ijl

⎞⎠−1
t∑

l=1

ni∑
i=1

nj∑
j=1

λt−lxijl Zijl (4.1)

the coefficient 0 ≤ λ ≤ 1 is known as “forgetting factor” and gives more weight to the
recent observations. In this way, the estimator (4.1) adapts the models to the underlying
technological and environmental changes. With respect to other forms of weighting, it
enables to easily obtain the recursive expression of (4.1).

Simple algebraic manipulations (as in Ljung and Söderström 1983) and the inclusion
of other adaptation coefficients, lead to the recursive LS estimator

Rt = λRt−1 +
ni∑
i=1

nj∑
j=1

xijt x′
ijt, R0 = ρ0I

âijt = Zijt − φ̂
′
t−1xijt

φ̂t = φ̂t−1 + μR−1
t

ni∑
i=1

nj∑
j=1

xijtâijt, φ̂0 = φ0, (4.2)

where âijt are prediction errors, the matrix Rt is “denominator” of (4.1), μ is a stepsize
coefficient and φ0, ρ0 are initial values.
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Table 5. Estimates (4.3) of the Coefficients of the Filter (4.2) Applied to the Model (3.11)

Coefficient φ01 φ02 φ03 ρ0 λ μ σ2
a

Estimate (a) 0.3051 0.349 0.349 818.2 0.117 −0.613 12.07
Estimate (b) 0.408 0.124 0.487 263.2 1.13 1* 17.66

The algorithm (4.2) considerably saves calculations and with μ = 1 is asymptotically
equivalent to (4.1). However, the presence of the factor μ �= 1 in (4.2), together with the
initial values φ0, ρ0 �= 0, improve the adaptive capabilities with respect to the estimator
(4.1). By this we mean both its ability to track the trajectory of parameters and to reduce
the variance of prediction errors.

Optimization. The design of the adaptation coefficients λ, μ and of the initial values
φ0, ρ0 is fundamental for the performance of (4.2). The heuristic approaches used in the
Bayesian and engineering literature (e.g., Ljung and Söderström 1983), may not be useful for
forecasting. As in Grillenzoni (1994) one can determine their optimal values by minimizing
the sum of squared prediction errors:

[ λ̂, μ̂; ρ̂0, φ̂
′
0 ] = arg min

⎡⎣Q̂N =
nt∑
t=1

ni∑
i=1

nj∑
j=1

(Zijt − φ̂
′
t−1xijt)2

⎤⎦ . (4.3)

This approach is consistent because it coincides with the cross-validation method used in
nonparametric regression for the design of the bandwidths.

Owing to the possible nonsmoothness of the objective function Q̂N , the solution of the
optimization problem (4.3) is carried out by search algorithms. In our experience the more
sensitive parameter is μ, whereas ρ0 does not have an important role and could be fixed a
priori. A sensible benchmark for evaluating the performance of the method is represented
by the residual variance σ̂2

a of the corresponding constant parameter models. The greater
the reduction of this variance, the greater the degree of nonstationarity of the models.

We tentatively applied the method (4.2)–(4.3) to parsimonious models of the NDVI
series, such as (3.11). Estimates of the coefficients (4.3) are reported in Table 5, and the
corresponding recursive estimates (4.2) are displayed in Figure 4. We may see that the
adaptive method reduces the innovation variance by about 20% with respect to the model
(3.11). On the other hand, the variance in the constrained (μ = 1∗) estimation is greater
than that in (3.11) because of the small values of nt.

Monthly Data. As a further application, we consider the case of monthly NDVI data
Zijs. A sensible STAR model should contain a seasonal component at lag 12 with a spatial
dynamic of order one. Saving parameters as in (3.3) we have

Zijs = 0.377 (Zijs−1 + Zij−1s−1 + Zij+1s−1 + Zi−1js−1 + Zi+1js−1)/5

+0.622 (Zijs−12 + Zij−1s−12 + Zij+1s−12 + Zi−1js−12 + Zi+1js−12)/5 + aijs

(4.4)
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Figure 4. Recursive estimates of the model (3.11) generated with the algorithm (4.2) and the coefficients in Table
5: φ̂1t (solid), φ̂2t (dash-dot), φ̂3t (dashed), t = 1. . . 18.

with σ̂2
a = 84.2. The contribution of spatial components is significant because the univariate

model alone provided a greater residual variance: σ̂2
a = 89.6.

Owing to the huge number of data (N ≈ 720,000), application of the adaptive method
to (4.4) was problematic. Optimization (4.3) was very slow and therefore we have assigned
a priori values to the coefficients of algorithm (4.2), namely, φ01 = 0.4, φ02 = 0.6, ρ0 =
1,000, λ = 0.93, μ = 1. The corresponding recursive estimates φ̂1s, φ̂2s are displayed in
Figure 5(a). As regards their variability, it may also be explained with the change of NOAA
satellites, which in fact occurred in February 1985 (s = 42), November 1988 (s = 87) and
the last in September 1994 (s = 157).

Figure 5(b) provides the sequential parameter estimates, as obtained by separately
regressing each data matrix on the previous one, namely,

φ̃s =

⎛⎝∑
i

∑
j

xijs x′
ijs

⎞⎠−1 ∑
i

∑
j

xijs Zijs

as we can see, they are extremely erratic. As a consequence, their predictive ability, evaluated
with the innovations ãijs = Zijs − φ̃

′
s−1xijs, is bad because their variance σ̃2

a=195.6 is
more than twice the residual variance in Equation (4.4).

4.2 VARIABILITY IN SPACE AND TIME

The most general nonstationary situation is where parameters of STAR models change
both in space and in time. To deal with this problem, we extend the weighted estimator (4.1)
as follows

φ̂ijt =

(
t∑

l=1

λt−l
1

ni∑
k=1

nj∑
h=1

λ
| i−k |
2 λ

| j−h |
3 xkhl x′

khl

)−1

×
t∑

l=1

λt−l
1

ni∑
k=1

nj∑
h=1

λ
| i−k |
2 λ

| j−h |
3 xkhl Zkhl , 0 < λ1,2,3 < 1. (4.5)



ADAPTIVE SPATIO-TEMPORAL MODELS 173

Figure 5. Recursive and sequential estimates of the parameters of model (4.4): φ̂1s (dashed), φ̂2s (solid), (φ̂1s +
φ̂2s)/2 (dash-dot), s = 1, 2 . . . 220.

With this solution, parameter estimates depend on local data in every direction of space,
and not only along the latitudinal or longitudinal directions.

Notice, that following the classical nonparametric regression, the exponential weights
λ

| i−k |
2 could be replaced by the kernel weights K[(i − k)/h2]/h2, where 0 < h2 < ∞

is the so-called bandwidth. However, in the time dimension it is preferable to keep the
exponential weighting because it has a one-sided profile and enables to obtain the recursive
implementation of estimators.

The recursive (in t) version of (4.5) can be derived as in the case of (4.2)

âkht = (Zkht − φ̂
′
ijt−1xkht ) ,

Rijt = λ1 Rijt−1 +
ni∑

k=1

nj∑
h=1

λ
| i−k |
2 λ

| j−h |
3 xkht x′

kht , Rij0 = ρ0I

φ̂ijt = φ̂ijt−1 + μR−1
ijt

ni∑
k=1

nj∑
h=1

λ
| i−k |
2 λ

| j−h |
3 xkht âkht , φ̂ij0 = φ0. (4.6)

This implementation reduces the amount of computation, and the inclusion of the stepsize
μ improves the adaptive capability with respect to (4.5).

The design of the coefficients λ1, λ2, λ3, ρ0, φ0 can be carried out with the criterion
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Figure 6. Adaptive estimates of the parameter of model (4.7) obtained with the filter (4.6) and subjective values
for the smoothing coefficients. Estimates φ̂ijt are displayed for the years t = 1983, 1988, 1993, 1998 (x-axis =
latitude).

(4.3); however, computations result very demanding because the algorithm (4.6) performs
ni×nj times the operations of (4.2). For this reason, we applied the method to the simplest
STAR model:

Zijt = 0.9987 (Zijt−1 + Zij−1t−1 + Zij+1t−1 + Zi−1jt−1 + Zi+1jt−1)/5 + aijt, (4.7)

where σ̂2
a = 16.093. With respect to (3.10) the parameter φ of (4.7) can be interpreted as a

space-time unit-root, namely a unit root both in space and in time.
Since computation remained demanding, we estimated (4.7) recursively with the algo-

rithm (4.6) implemented with the a priori choices φ0 = 1, ρ0 = 100, λ1 = 0.5, λ2 = 0.9,
λ3 = 0.7, μ = −0.2, which yield σ̂2

a = 14.86. This variance is greater than that of previous
adaptive estimations, but it is smaller than that of (4.7), with constant parameters. Recursive
estimates are displayed in Figure 6, every five years. The actual variability seems moder-
ate because φ̂ijt lie in the range [0.99, 1.01]. However, it should be noted that even small
fluctuations of a root on the unit circle may determine complex nonstationary patterns in
the process.

Computational problems of algorithm (4.6) are due to the fact that it is recursive only
with respect to the time index. Recursivity in space can be developed only in a particular
direction, along the latitude or the longitude. In the Appendix a doubly recursive estimator
is developed and tested on NDVI data.
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Figure 7. Out-of-sample forecasts of Zijt for the year t = 1999, obtained with the formulas (5.1) and (5.2).

5. FORECASTING

As a final exercise we evaluate the forecasting ability of some systems we have presented
so far. In particular, we are interested in comparing models of original and detrended series,
and models with constant and varying parameters. Returning to Section 2, the one-step-
ahead predictors of the detrended models are

TD models : Ẑijt+1 = Zijt + x̂ijt+1 , x̂ijt+1 = φ′xijt (5.1)

SD models : Ẑijt+1 = Ẑi−1jt+1 + ŷijt+1 , ŷijt+1 = φ′yijt (5.2)

where the vectors x, y contain present and past values of the series x, y.
From (5.2) it is clear that predictions of SD models strongly depend on the initial

values Ẑ0jt+1, j = 1, 2 . . . nj . These can be obtained with univariate forecasting of the
border series, or simply setting Ẑ0jt+1 = Z0jt, which is the random walk prediction. In
any event, these values influence all of the generated forecasts, because the predictor can
be expressed as Ẑijt+1 = Ẑ0jt+1 +

∑i
k=1 ŷkjt+1. For this reason one may expect that

performance of (5.2) is worse than that of (5.1).
Figure 7 shows the pattern of (5.1) and (5.2) for the year t+ 1 = 1999. The underlying

model for series x, y was a STAR(3,2), and (5.2) was initialized with Ẑ0jt+1 = Z0jt+1,
the real value. Despite this choice, predictions in Figure 7(b) are more smooth and lower
than those in Figure 7(a). Statistical evaluation of forecasts can be obtained with the mean
squared forecast errors (MSFE)

MSFEt+1 =
1

ni nj

ni∑
i=1

nj∑
j=1

(
Ẑijt+1 − Zijt+1

)2
. (5.3)

We computed (5.3) for models estimated on original and detrended series, with orders
(q, p) = (3, 1), (3, 2) and with the inclusion of deterministic components (this solution
was suggested by a referee). Algorithm (5.2) was initialized with the real value Z0jt+1 and
results are reported in Table 6.
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Table 6. MSFE Statistics of STAR Models of Order (3,1), (3,2), Fitted to Original and Differenced
Series. In the last four columns, a constant term α0 and a latitudinal trend (α0 + α1 i) were
included into the models.

Data Model (3,1) (3,2) (3.1) + c (3.2) + c (3.1) + i (3.2) + i

Original Zijt = φ1 Zi j t − 1 + . . . 7.44 7.81 6.53 6.86 6.06 6.09
TD Series Zijt = Zi j t − 1 + xijt 7.56 7.52 7.43 9.07 7.33 8.97
SD Series Zijt = Zi − 1 j t + yijt 8.30 8.21 10.16 12.60 9.75 12.13
Original Zijt = φ1 Zi − 1 j t + . . . 12.66 12.88 11.58 11.12 10.32 10.12

As we see, the first two models (that do not contain instantaneous components), have
the best forecasting performance. The other two significantly worsen in passing from the
real initial value to the random-walk prediction Z0jt. Performance of the models fitted
to original series significantly improves (up to 20%) by including deterministic spatial
components, such as the latitudinal trend (α0 + α1 i). This improvement, however, stops
by using space-time polynomials or spatial polynomial of higher order. On the other hand,
inclusion of deterministic components (as in the simple form of a constant term), has a
negative impact on the forecasts of the models of differenced series. This is particularly true
for STAR models of higher order, as (3, 2). In summary, the best forecasting performance
is provided by the first model (on original series and with latitudinal trend), whereas the
worst one by the fourth model (on original series and with instantaneous component).

Adaptive Forecasts. As a final exercise we compare the forecasting capability of con-
stant and varying parameters models. In this context, we considered simpler schemes, such
as (3.10) and (4.7). Space-time varying estimates of the parameters of model (3.10) for the
year t = 1998 are reported in Figure 8. Smoothing coefficients of the algorithm (4.5) were
selected a priori as λ1 = 0.5, λ2 = 0.9, λ3 = 0.7. Owing to the decomposition of the unit-
root in auto and cross spatial components, they show a greater variability than estimates in
Figure 6.

With such estimates the adaptive one-step-ahead predictor Ẑijt+1 = φ̂
′
ijtxijt is im-

Figure 8. Adaptive estimates of the parameters of model (3.10) for the year t = 1998, obtained with the filter (4.5)
and subjective choices for λk , k = 1, 2, 3.
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Table 7. MSFE Statistics of Models (3.10) and (4.7), Estimated With Least Squares and Adaptive
Methods.

Estimator (3.5) (4.2) (4.6)

Model (4.7) 7.62 6.84 6.66
↔ (−10%) (−13%)

Model (3.10) 7.41 6.51 6.27
↔ (−12%) (−15%)
� (−5%) (−6%)

plemented, and its MSFE statistics for the year t + 1 = 1999 are reported in Table 7. As
one can see, model (3.10) performs better than (4.7); moreover, adaptive estimation has a
positive impact on forecasting, even compared with the results in Table 6. It should be noted
that results in Table 7 are significantly different in percentage, and much more in statistical
terms if one compares them with a standard F-test.

6. CONCLUSIONS

Satellite environmental data are nonstationary both in the spatial and in the temporal
dimension. Such data can be represented with space-time unit-root auto-regressive models,
namely STAR models which have parameters on the border of the stability region. Tables 6
and 7 have shown that parsimonious models, estimated on original data, may outperform in
forecasting more complex models (with instantaneous components) estimated on detrended
data.

This performance can be further improved by allowing coefficients to vary both in space
and in time. The greatest variability occurs in time, because of the change in satellites and
natural evolution. Algorithms for estimating time-varying parameters are simple and can
be optimized even in the presence of many observations. They provide the best in-sample
and out-of-sample predictive performance.

It would be interesting to compare the forecasting results of Tables 6 and 7 with those
of numerical techniques of environmental sciences. However, in that context NDVI data
are mainly used for climate classification and trend extraction (see the FAO’s site at http:
//www.fao.gov). Contrary to certain catastrophic perspectives, this study has assessed that
vegetation activity measured by satellites is relatively stable, or at least random walk. In
any case, we realize that final conclusions can obtained only with at-ground investigations.

APPENDIX: VARIABILITY IN TIME AND LATITUDE

This Appendix considers the case where parameters of STAR models change both in
time and with respect to the latitude, namely φit. This situation is of practical interest in
the NDVI case study for the presence of a marked north-south trend. To extend the methods
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Table A.1. Estimates (4.3) of the Coefficients of the Algorithm (A.5), Applied to the Model (4.7)

Coefficient φ0 ρ0 λ1 λ2 μ σ̂2
a

Estimate (a) 0.99967 2213.3 0.10520 0.98237 −0.43064 13.61
Estimate (b) 0.99865 987.8 0.3506 1.0976 1* 18.85

(4.1) and (4.5), we consider the doubly weighted estimator

φ̂it =

⎛⎝ t∑
l=1

λt−l
1

i∑
k=1

λi−k
2

nj∑
j=1

xkjlx′
kjl

⎞⎠−1
t∑

l=1

λt−l
1

i∑
k=1

λi−k
2

nj∑
j=1

xkjlZkjl (A.1)

it is easy to show that this minimizes the local objective function

Pit(φ) =
t∑

l=1

i∑
k=1

nj∑
j=1

λt−l
1 λi−k

2 (Zkjl − φ′xkjl)2, 0 ≤ λ1, λ2 ≤ 1.

The recursive version of (A.1), can be obtained by treating its sums sequentially and then
by expressing each of them in recursive form. If yijt =

∑j
h=1 xihtZiht is the longitudinal

sum, then the “numerator” St of (A.1) can be written as

yijt = yij−1t + xijtZijt, yi0t = 0

pit = λ2 pi−1t + yinjt, p0t = 0

Vt = [ p1t, p2t . . . pnit ],

St = λ1 St−1 + Vt, S0 = O. (A.2)

This formulation implies that the latitude index i runs before the time index t, and subse-
quently all resulting values are filtered in the temporal dimension.

Similarly, if Xijt =
∑j

h=1 xihtx′
iht then the “denominator” Rt of (A.1) becomes

Xijt = Xij−1t + xijtx′
ijt, Xi0t = O

Pit = λ2 Pi−1t + Xinjt, P0t = O

Wt = [ P1t, P2t . . . Pnit ],

Rt = λ1 Rt−1 + Wt, R0 = O. (A.3)

Finally, denoting with R(i)
t , S(i)

t the ith blocks of the matrices in (A.2) and (A.3), the
estimator (A.1) can be rewritten as φ̂it = [R(i)

t ]−1S(i)
t .

At this point, by defining the prediction errors âijt = (Zijt− φ̂
′
i−1t−1xijt), a recursive

version of (A.1) can be obtained as in (4.2)

φ̂it = φ̂i−1t−1 + μ [R(i)
t ]−1

nj∑
j=1

xijt âijt, φ̂00 = φ0. (A.4)

Empirical applications have, however, shown that a better tracking capability is yielded by
smoothing the sums

∑
j xijt âijt with the coefficient λ2 :
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Figure A.1. Recursive estimates of the parameter of model (4.7) obtained with the filter (A.5) and the coefficients
in Table 8(a): φ̂it, i = 1, 2 . . . 99 , t = 3 , 4 . . . 18.

âijt = (Zijt − φ̂
′
i−1t−1xijt),

qit = λ2 qi−1t +
nj∑

j=1

xijt âijt, q0t = 0

φ̂it = φ̂i−1t−1 + μ [R(i)
t ]−1 qit, φ̂00 = φ0. (A.5)

Also in this case, optimal design of the coefficients λ1, λ2, μ can be achieved with the
approach (4.3). Computation, however, becomes more demanding.

We applied the adaptive method to the model (4.7); coefficients estimated with (4.3)
are displayed in Table A.1. As in Table 5, the algorithm (A.5) with the constraint μ = 1,
was unable to reduce the innovation variance of the constant parameter model. This was
possible through the unconstrained estimates in the first row of Table A.1. We may note that
a fundamental role is played by the time weighting rate λ1, rather than by the latitudinal
one λ2 which, in fact, approaches 1 in both cases.

Figure A.1 provides the path of recursive estimates obtained with the algorithm (A.5)
and the coefficients in the first row of Table A.1. The interesting feature is that they grow
from north to south as the spatial trend of the vegetation index. This is a typical feature of
other time-varying unit-roots series (see Grillenzoni 1998).
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