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1. INTRODUCTION

In the analysis of stochastic systems, the transfer functions which
connect input and output are usually specified by “rational poly-
nomials”; that is by a class of fairly general operators, whose
properties have been well investigated in mathematics. In the applied
context, however, the relationships between these functions are often
studied from the point of view of the particular problem to be tackled.

In this work, similarly to Piccolo (1984), we consider the set of
polynomial functions in terms of metric space. This enables us to
analyze the properties of product and sum of rational operators with
the general framework of the length, distance, angle, convex set, ecc.
Moreover, by means of the transformation which maps each poly-
nomial into the vector of its coefficients, the metrics may be redefined
in Euclidean sense, obtaining a suitable operative meaning. The final
result is that the conditions of orthogonality in-the-product and
stability of-the-sum, of system  operators, can be directed to the
“observable structure” of their polynomials (orders, delays, roots).

Properties oforthogonality, in particular, have important conse-
quences in simplifying the representations of rational distributed lags

(*) Dip. di Economia Politica, Universitd di Modena e Dip. di Scienze Statistiche,
Universitd di Padova.



154

models, and in turn on the algorithms of identification, estimation
and forecasting. The performance of the proposed metrics and/or
their ability to characterize the desired properties can be empirically
checked. '

2. THE SPACE OF POLYNOMIALS

“Let P (x) be the set of linear polynomials p (x) of degree »n with
real coefficients

PX)={pPx): @ +px+.. + puXx"); D, x €ER}

P (x) is clearly a linear vector space over the scalar field R, since it is
closed under the usual operations of direct sum and scalar product:

i) p(x),q(x)€P(x)>p(x) D q(x)€P(x)
i) p(x)eP(x),aeR—>a-p(x)eP(x) .

A basis in this space in given by X =(,x,..x", if n= co the
dimension is infinite and the class P (x) coincides with that of rational
polynomials R (x) = {p (x) /g (x)}. _

The analysis of the relationships between the elements of P (x) is
developed with the definition of measures of distance, length, angle,
ecc. Given the continuity of the functions p (x) in x, we have:

' ‘ 5 1k .
distance dk(p.q)=[j1p(x) "»q(x)l"dx] k0

a

angle @.9) = |p(x)q(x)dx

B Cmm— O

1k
length  1lple = [ () ¢ dx]

B Gy, O

these quantities, satisfying the usual Triangular, Schwarz, Minkowski,
Holder inequalities, make P (x) a metric and/or normed vector space
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(see Courtain and Pritchard, 1977). However, the above metrics
characterize local properties (relative to the choice of [a, b]), and in
passing to the limit they become indefinte (+ oo — <o) and useless.
‘Moreover, translation to the complex field with, e.g.,

+n

(p , q) = j D (e—lw)q (e+im) dﬁ)‘

—-T

does not improve the situation because once again, we reason in local
terms (i.e. on the unit circle | e**| = 1).

Thus, it is necessary to define a transformation which maps P (x)
~into a vector space equivalent with respect to the properties (i, i),
but over which the metrics can assume a suitable operative meaning.
A transformation of this type is that of P (x) into R"*! given by

Tlp())=Tp x}=p = (Po,p15-. Pn)

where p provides the coordinates of p (x) in the basis x. 7(-) is
clearly isometric because ‘

Tlapx) +Bgx)) =Tlap ®@Bg)x] = (p®Pg’

but is not isomorphic (it does not preserve the properties of distance,
lenght, ecc.), if the metric are redefined in euclidean sense as

h@.q) = [Eolp— ¢:11"
@.9) =Zj-opq:=p'¢q
ipl=(@.p"

Proceeding in this way however, the relationships between the poly-
nomials are directly referable to their “observable structure”.

Now, consider in P(x) the set of monic polynomials
(po = go = 1). This set is not a subspace since it is not closed (a sum of
monic polynomials do not set up a monic polynomial) and T(-)
associates a set in R". In this context, we wish to investigate the
structure of the subset of p (x) with roots lying outside the unit circle
(stability region), and answer to the question whether this subset
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forms a group. That is: Does a sum of monic polynomials with “stable
roots” still have stable roots? In the sequel we heuristically show that
this holds only if the degree n < 3.

Indeed, let {p; (x)}] be m monic polynomials of degree # and roots
outside the unit circle. This means that the vectors p;' = (p;, ... p;) are
contained in the region of stability S, € R". Their sum generates a
non monic polynomial p (x) = £/ p,(x) = m + L/ (/" p;) ¥ whose
zeros, however, coincide with those of the monic g (x) = p(x)/m.
Now, since the corresponding vector of coordinates ¢ = XL, p;/ m is
an arithmetic mean (i.e. a convex combination) of the coefficients p;,
we conclude that g €S, (and so p (x) is stable), only if S, is convex.
But from Anderson (1975) we have

Sit Iml<t 8: P2+Pl<1 S3: pptpt+pi<l

p-—pn<l p—pn—-p<l
lpa]l <1 B—-mnp—n<l
Ipsl <1

since S3 is bounded by nonlinear cosntraints it may be non-convex,
and graphically we have Figure 1. For n > 3 it is difficult to
characterize the structure of S, although Piccolo (1982) have derived
the exact measure of its size. o :

3. OTHOGONALITY AND ESTIMATION

The question of orthogonality between the operators of dyna-
mical systems has been discussed by Priestley (1983), in the context of
the transfer function (TF) models of Box and Jenkins (1976, Part III).
This class of systems is fairly general and provides a parsimonious

-representation of stationary processes {y,, x,} with rational spectral
densities

=B 8B
BT 6®
$;(B) x, = 0;(Ble,, e, ~ IN(0, &) (3.1b)

a,, a, ~ IN(0, c? (3.1a)
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Py

Fig. 1 - Region of stability of order 3

In (3.1a), (¥, x, a) are the output the input and the disturbance, (B,
b) denote the lag operator and the delay factor (B x, = x,-3);
moreover (&, o, ¢, 8) are linear polynomials of degrees (r, s, p, q)
< 0. Some restrictions are needed in order to ensure the structural:
identifiability (and so the estimability) of the system; in particular

i) 8(0),¢(0),06(0),3(0),80=1, 0@l < w
i) [8(2),0(),08(),%,8@)#0, |z<1

that is the monic polynomials are stable and the non monic one has
bounded coefficients. Under these conditions we may conceive a
convergent linear representation of (3.1a) by means of the Taylor
expansions below, in which | vo| < 00, Yo = Jp = 1
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_o®B _=2 B 2.
V(B)_E_(TBT iEOViB’, \F(B)—W—FO%B'

Let us finally recally the parametric expressions of the covariance
functions

Cross oy (B) = v (B) B’ 1xx (B) (3.20)
Auto Yxx (B) = U (B) ¥ (B™") & (3.2b)

these will be utilized in the sequel as spectral densities with
B=z=¢® we[—mn, + n].
Now, the problem of Priestley (1983) was that of establishing the
conditions under which the estimates of v (B), yielded by the minimiz-
ation of the functionals.

J(v) = Nt ne =y — vV(B)Xi—p (3.3a)
L, =2ZNad, e =0V (B) (3.35)

are parametrically equivalent. In particular, he recognized that “in
order to have v (B) = v,(B), one must appeal to some form of
orthogonality property between the functions v (B) , { (B)”, (Priestley
1983, p. 277). '

The separability of the estimates of v (B), ¥ (B), induced by
their orthogonality, have useful consequences on many grounds. We
point out the simplification of the algorithms of calculation, the
improvement of the efficiency of estimates, the reliability of the
control rules x, —+ y,, ecc. An important application of these proper-
ties occurs in the identification of the orders of the system (r,s, b, p,
q). Recently, Poskitt (1989) has outlined a selection strategy based on
the minimization of the criterion

a

Ja log N
BIC(r,s,p,q!b)=logW+ (r+s+1+p+gqg

with maximum likelihood. The computational problems are clearly
hard; however‘, if ¥{ = ¥,, then one can identify v (B) with BIC (r,
s|b) =log (Ji;/N) + (r + s) log N/ N and least squares methods.
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The general condition established by Priestley (1983) so that
V= V,, was

[vnx(z)]_ =% =0

‘T’(Z_l) k=—co

where [-]_ denotes the “forward” expansion. This condition is
certainly satisfied if {x,,n,} are uncorrelated; but this is a typical
feature of open-loop systems, where Yep (k) = 0k < b > 0, [y, (2)]-
= 0. To show this situation for the model (3.1), and its pendat in
- terms of orthogonal operators, note that for y/ (+) fixed, (3.2) and
(3.3) imply

Yy (Z) Yiy (Z)

e = Yrx (%) 22 2(0) = Yz (Z)zb

where ¥, = y /Y (B), % = x,/ ¥ (B) in (3.3b). Now, since

= Y@ L Y0
'Y.a"ri (Z) l \l-’ (Z) |2 s Yex (Z)

V(@I

we have ¥, = ¥, only if [ys /¥.) is a backward transfom, i.e. the

feedback y, — x, does not occur. Note finally that { (z) = ./ Y (2) G,
in terms of spectral factorization theorem. :

Although previous results are “purely algebraic” ones (Priestley
1983, p. 285), the question of the separability was already introduced
by Pierce (1972) in statistical terms. Indeed, he showed that the
maximum likelihood estimates ¥y , iy are asymptotically independent
in absence of feedback. This fact can easily be seen in the Gauss-New-
ton estimator, by computing its gradient

’ - 'aaf = d)(B) »
&P = ——aE [——-—-—9 B 05 (M=t e My Xyp ... Xi-5-9)
1
0B (M- mpa—yoapy) (3.4)

B'=106..8w0..0,,91..9,6.. 0] =[Bi,B:l, m =y —n
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Thus, since {x,, a,} are independent, the same is true for m, = v (B)
Xi—p, By = Y (B) a,, so that the dispersion of the nonlinear estimator
E (£, &) o is block diagonal.

This remark enables us to state that the estimation of v (B) in
(3.3a), cannot be carried out with the least squares method applied to
the linearized model

& (B)y: = o, (B)x;-p + Ne, W = S, (B) n,

4. ORTHOGONALITY AND REPRESENTATION

The problem of orthogonality early posed by Priestley (1983)
could be summarized in the following way: Under what conditions,
does the estimation of the models

Y= V(B)xi-p + 1y
TF Y= v(B)x- + Y (B)a, @.1)

yield equivalent results for v (B)? Instead, the question we address in
this and next section in given by: Under what conditions, does the
nonlinear estimation of

TF2 tB)y.— v(B)xi-s = a;, n(B)=1/{y(B) 4.2)
TF3 yp=v(Be-p+ V(B a, e=x/]V(B 4.3)

lead to equivalent results for v (B), ¥ (B)? Notice that the above are
just AR and MA representations with the same operators as the
transfer function model, so that our answer must lie in the algebraic
relationships between the polynomials of (3.1). However, more gen-
eral and substantial issues are involved.

Simplified AR - Consider the “exact” autoregressive represent-
ation of the system (4.1): n (B) y, = w (B) x,-5 + a,. Consistent with
the univariate (ARMA) analysis, we would expect the number of
parameters involved and/or the order of the polynomials not to
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change. Only the nature of the coefficients (linear or rational) or their
value might be allowed to change. In the strictly arithmetical sense,
however, the new impulse resonse function w (B) = n (B) v (B)
contains p + ¢ new parameters, and this seems in contradiction with
the mechanism of sequential filtering implicit in (4.1)

{yz = v(B) x¢-p = ny,
n=m®n+a=mByt+a

Where, in the first step cross-covariance vy, is filtered independently
of auto-covariance vy, , and in the second step, since Y is a function
of v,y -

¥un (K) = Yy (K) = [Va Vay (B) + Vit 1 ¥y (B T+ 1)+ ..] (4~4)‘

(see Appendix for the proof) n, may be represented with the basis {y;} ,
by means of a suitable polynomial n* (B).

Now, the only possible way to have (4.1), (4.2) parametrically
equivalent, is to require some form of orthogonality between the
operators of the system. Setting v, (B) = v (B) B, w; (B) = w(B) B’,
this means

wy (B) = n(B) vs (B) = [l — w1 (B)] Vs (B) = Vs (B)

ie. T (B) = [’gll m; Bf] 1 [g v,-B“‘] = v, (B)

i=0

To this end, by extending the ideas of Section 1 to the space of infinite
“linear polynomials of B, a measure of orthogonality is provided by
(see also Piccolo, 1984)

(m,v) =W v/ J/mr-Vvle(-1,+1) (4.5)
n = [T[l Ty ... Wp Mp+ 4 ]

VvV =100..vovivs..]

which is close to zero according to:
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i) {m;, v} decay rapidly, i.e. 8 (B), 8 (B) have roots far from
the unit circle;
ii) b is relatively high;
iii) {n;, v} are non-monotonic, i.e. the polynomials have
negative or complex roots.

By means of the metric (4.5), the properties of orthogonality of
the polynomials are then directly referable to the dinamic structure of
the system. In particular, to emphasize the role of the delay 5, note
that if n, ~ AR (p) with p < b, it follows that ' = [¢; ... §,] hence
((m1, v5)) = 0. Final consequence of the orthogonality , (B) | v,
(B) is the simplified autoregressive representation (4.2).

Simplified MA - In the identification of the impulse response
function v (B) B®, use of the partial cross covariance function has
never been required. This function may be defined in practice, as
proportional to the sequence of marginal regression coefficients

(b € 7= T viexis + (46)
or equivalenty with
Y20\ V@) 1) . yadk) Vok
o) | = 1010 .. . Vik
Yorl®) Yol e 1e®) \vie
Le.. Yoo = Dax Vik

The unnecessity of {vi} suggests that cross covariance and
partial cross covariance should have the same information content,
i.e. the same pattern, and indeed, if {x,} is white noise (', diagonal)
we have y,, oc vi . This equivalence can be extended to the case of
{x] correlated, by assuming orhogonality between {; (B) = [/ (B) —
1] and v, (B), obtaining

Ty (B) = v (B) B G* < v, (B) (4.7



163

Also in this case, by using the metric (4.5), the orthogonality is
directly referable to the dynamic structure of the system. In par-
ticular, assuming x, ~ MA (g) with g < b, we have _&_ = [0, ... Gq] ,
hence ((v,, I))) = 0. As a consequence of the orthogonality v (B) _|
V1 (B) we have the simplified moving average representation (4.3).

Let us finally emphasize that the measure ((,)) not only has a
formal meaning in terms of space of polynomials and orthogonality.
Indeed, it summarizes two substantial facts, responsible of the sim-
plified representations: -

i) When the monic polynomials have stable roots far from
the unit circle, their products generate near singular components that
cancel. For example, if ¢ (B) = (1 — ¢; B), ¢; < 1, then o (B) ¢; =
0; this fact is clearly strengthened by the presence of a second root
with opposite sign.

ii) When the polynomials have negative or complex roots and
b is relatively high, the impulses {v;, {;, ;} inside the system are
either .positive or negative and compensate each other. A typical
example is the gain g = Z%, v;, vi = Zj-1 §; vi-; — ®;; while the
contribution of b is well established by (4.4).

Applications - In what follow, we investigate the practical impli-
cations of othogonality on the algorithms of identification, estimation
and forecasting:

Identification - Recalling previous results (4.4) and (4.7), we have

n(B) Lvi(B) - Ym(B) =1, (B)
vo(B) LV (B) - v1y(B)ocv(B)B

In this way, the identification of v (B), V* (B) may be directly
developed on the sample correlation functions (auto and cross) of the
observable series {y,, x;} . In practice, the procedures of filtering (to
estimate n,) and prewhitening (to cancel \ (B)), see Box and Jenkins
(1976), are no longer necessary. Moreover, all the problems of
choosing among alternative filters can be avoided.

Estimation - The estimation of the parameters B utilizing the repre-
sentation (4.2), leads to a substantial saving of calculation. In fact,
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with respect to (3.4), the gradient of the Gauss-Newton estimator
takes on the analytic expression

aa 1
&) = ;’_é = [_STBT)‘ (M o My X oo Xi=b=35) »
.
'9“(3?)‘ =t oo Yo—p U1 . ut—q)]
u,—m,=a,, ut=1t(B)y¢, m,=V(B)x,—b

' The resulting nonlinear estimates Vy, ¥ are no more statistically
independent. However, their gradients are computed separately from
the observable series y, , x; , with a procedure of filtering that involves
1/3 the previous calculations only.

Forecasting - In the context of the representation (4.3), it is easy to
see that the variance of the [-steps ahead prediction error becomes

1-b I
Elg(DF=Z vi& +Z v o?
=0 j=0

This simplified expression has been already introduced by Box and
Jenkins (1976, p. 405); we remark, however, that without the assump-
tion of v, (B) | ¥ (B) it cannot be maintained. Finally, using the
representation (4.2) we may split the predictor J, (/) into two quan-
tities, both operating on the observable series

P =i, (- D+ oo+ Spyiri—p + 8w+ o+ Bu4—g
ﬁz; (I) = 81 ﬁzt (l - 1) + ...+ 8,m,+1_, + [} ) )21 (l - b) + ..+ O Xit1-b-5

5. AN EMPIRICAL EXAMPLE

The criterion of orthogonality ((,)) has practical utility and is
reasonable since it refers to observable and spectral properties of the
operators. It is not sure, however, that if ((p, ¢)) = 0 the polynomials
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p (x), g (x) would actually be orthogonal; indeed other types of
metrics could be introduced. Anyway, orthogonality itself is not an
absolute concept: We should distinguish a polynomial othogonality in
the arithmetical sense from one relating to the filtering performance
of operators. In this section we empirically check the ability of (4.5) to
characterize the orthogonality in the second sense.

Let us define the three macroeconomic series

B, = Balance of foreign trade, (1 — B) B, = Y,;
PM,= Index of import prices, (1 — B) PM, = X,;
PI, = Index of wholesale proces, (1 — B) PI, = Z,;
t = Monthly data in the period 1973.01 - 1985.12.

For all the series the stationarity in mean was reached with
difference of order one (1 — B); Figures 2, 3 report the corresponding
sample covariance functions.

In Figure 2 we note that whereas the series X, is practically a
white noise, the others Y,, Z, still exhibit a considerable auto-
covariance, of MA (1), AR (1) type respectively. The implied univari-
ate models were

Y, = (1 +(8."57)633)y“ X, % x,, (1 - .6128)Zt -z

In Figure 3 both the pairs (Y, X), (X , Z) seem related by feedback.
The identification of transfer function models, however, requires
analysis of the “prewhitened” cross covariance functions, given in
Figure 4. '
Comparison of Figures 3, 4 provides a first check on the
performance of ((,)).
Indeed, since

X~ MA(g < b) = ((vs, Y1) =0
Vo (B) LV (B) = Yy (B) o< v (B)

then to test if

e, F) =0 5 vy (B) LU (B)



166

ko
Yxx Yyy
h“ln Lo bdl L bl
ML Ta o (T t|| |||| ]
[ V23
-l
Fig. 2 - Sample Autocovariance Functions
o Yox ,>Yx&'~

0.0 | |1| |l| I ||l I I ] | 0 | |‘

l I I L] i 0 I I l' l | 3 I l [ | l l 11
-
Fig. 3 - Sample Cross Covariance Functions
+.u
Yoz Y:::y

0.0 ll ”l
T

TN P P O
mEE

Fig. 4 - Prewhitened Cross Covariances
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one can investigate the effect of the prewhitening on the behaviour of
the cross covariances. Now, in our data we observe that yyy & Yyx »
since Y, ~ MA(1), b > 0; while yyz # v,,, because Z, ~ AR (1),
b=0.

An efficient test on the reliability of ((,)) follows from the
estimation of the various TF representations. From Figures 3 and 4
we identify the system

-
Yt = (1-——83—3—) Xf—l + (1 + eB)a[

and empirically

_ [~ 00085/ (1~ 514 B 1+.632B) . _
TFlY,—[ 00% /( b )]X,_1+( o )a,,01~.674

1 +. — - 3 i
TF2 ,[1/( ;388 B)] Y, = [ (9(;2)13/ (1 (_.4113)93 )] X+ a,, & = 687

Apart from the relative loss of significance of the parameter & in the
second representation, the two estimates are not statistically different

on the basis of the tests (B~ P/ /st+E->N (0, 1),
(62/61)? = F (n, n). Hence it should be ®, (B) | v, (B); indeed,
since

[—0— 0 —0°—¢°.]
‘= [- 000+ 0300 — 8 ..]

13
It

I <
It

we obtain the estimate ((n;, v5)) = .23; but cos (2) = .23 = o =
85/ 100.

A further check on the orthogonality of v, (B), {; (B), comes
from the estimation of the second system

L0

X‘=(1—5B3

)Yt-—l +e, Y, =(1 +GB).V1
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It gave

, s wo\] )
TF1 X, = 6(5%2/(1 (_-2_?;‘3) Yoo + e, 6 =1807

TF3 X, = 6.52/(1—.637B3)

@ (—3.5) V-1t e, o, = 18.17

where y, = (1 +.763 B)™! Y,; also in this case, we check the
statistical equivalence of the estimates. In fact the above coefficients
yield a value (v, ¥})) =.12, such that cos (B) =.12 = B = 92/100.

6. CONCLUSIONS

Empirical analysis points out the role of negative roots far from
the unit circle, in characterizing the polynomial orthogonality in
terms of the measure ((,)). The general aim of the study is that of
finding simplified AR and MA representations which utilize the same
system operators. This question is interesting in its own right, but also
have useful consequences in building dynamic models. For multivari-
ate closed-loop systems (simultaneous transfer functions)

z=VBz+¥YBa, z =z, 2m)
V(B) = {vs(B)B%}, ¥ (B)= Diag[{:(B)]

this problem is more urgent, but more difficult to solve. A paramet-
rically equivalent AR representation [I1(B) — V (B)] z, = a,, I1 (B)
= ¥ (B)™! is conceivable by assuming polynomial orthogonality by
rows: II; (B) | ¥, (B) where & = min b;. However, for the MA
representation, whose exact algebraic expression is unacceptably
complicated z, = [ — V (B)]”' ¥ (B) a, (and thus non estimable), a
solution of stochastic type must be sought.
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Appendix

Proof of Formula (4.4)

From the assumptions of section 3 we have

=0 k<b

'ny(k)zE(ytxt“k){#vo k> b

}bzo

Now since n, = v (B) x,—;, v(B) = Z{ v, B it follows

Yun (k) = En;n-i] = E[(y;= Vo X1=p= V1 Xt=p-1—V2 Xt=p~2" oo ~ Vk Xp—p—k— -..)

(Vi-k— Vo Xi—pmk = V1 Xi—p—k=1"" s ™ Vk Xy=b-2k—

Hence

Yon (k) = Yy (k) = Vi ¥xy B) = Vit 1 ¥y (B + 1) — .o .
= Vo Yy (b+E)~ V1 Yay b+ k+1)=voysy b+ Ek+2)— ... ..
+ VoVoYxx (k) + VoViYax (K— 1)+ voVoYux (K —2)+ ... ...
+ ViVoYsx (K +.1) + Vivi¥ax (k) + Vivayex (K— 1) o
+ VaVoYax (K +2) + ... ... -

But y, = v(B) x,—» + ¥ (B) @, so that

)
M
@
€)

VoY (B + k) = Vo E[(Vo Xt—p + Vi Ximp-t + Vax_,_, + .. T VW (B)a) X—p-i]

= Vo [Vo Yxx (k - 1) + V) Yax (k _'2) + "']
Vit G+ k+ 1) =v [y (b + 1) + Vi ¥ (k) + ..]

Hence, the first term of (1) cancels with row (2); the second term of (1)

cancels with row (3), and so on. Only the row (0) does not vanish,
being indeed formula (4.4).
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SUMMARY

We propose a measure of orthogonality for real polynomials which can be suitably
applied to the rational operators of dynamical stochastic systems. The measure
emphasizes the role of the dynamic structure of the models, in particular roots and
delay factors. The existence of orthogonality has important consequences in simplifying:
autoregressive and moving average representations and thus on the algorithms of
identification, estimation and forecasting. The performance of the measure in char-
acterizing the required propered property will be empirically checked.

RIASSUNTO

Viene proposta una misura di ortogonalitd per polinomi a coefficienti reali che pud
essere utilmente applicata agli operatori razionali di sistemi dinamici stocastici. La
misura sottolinea il ruolo che ha la struttura dinamica dei modelli, in particolare radici
e ritardi. L'esistenza di ortogonalitd ha importanti consenguenze nel semplificare le
rappresentazioni autoregressive ed a media mobile e quindi sugli algoritmi di identifi-
cazione, stima e previsione. Il comportamento della misura nel caratterizzare le
proprieta richieste & infine sottoposto a verifica empirica.



